

So f tware

Cover Page

I D C D O C U M E N T A T I O N

Continuous
Data

Subsystem

CD-1.1

Revision 1
Approved for public release;
distribution unlimited

Notice
This document was first published in March 2001 by the Monitoring Systems Operation of Science Applica-
tions International Corporation (SAIC) as part of the International Data Centre (IDC) Documentation. It was
revised to add multicasting capability and republished as Revision 1 in January 2003 (see the following
Change Page). Every effort was made to ensure that the information in this document was accurate at the
time of publication. However, information is subject to change.

Contributors
Raymond L. Cordova, Science Applications International Corporation
Aaron Douthat, Science Applications International Corporation
Warren K. Fox, Science Applications International Corporation
Jeffrey W. Given, Science Applications International Corporation
Bonnie MacRitchie, Science Applications International Corporation
Thomas Morris, Science Applications International Corporation
Ellsworth Sacks, Science Applications International Corporation

Trademarks
Ethernet is a registered trademark of Xerox Corporation.
NFS is a registered trademark of Sun Microsystems.
ORACLE is a registered trademark of Oracle Corporation.
Solaris is a registered trademark of Sun Microsystems.
SPARC is a registered trademark of SPARC International, Inc.
Sun is a registered trademark of Sun Microsystems.
UNIX is a registered trademark of UNIX System Labs, Inc.

Ordering Information
The ordering number for this document is SAIC-03/3000.
Notice Page

This document is cited within other IDC documents as [IDC7.4.1Rev1].
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

Change Page
This document is Revision 1 of the Continuous Data Subsystem CD-1.1. The following changes have been
made for this publication:
Change Page

Date Page Change

January 2003 as needed Added change bars (vertical lines that appear in the margin) to
identify new or revised material.

Change bars were not included for references that were updated,
for grammar and punctuation that was corrected, or for figures
that were moved to accommodate sensible paging.

Notice Changed Notice Page to include an explanation of the Revision
number, a reference to this Change Page, and a new SAIC number.

Added Bonnie MacRitchie as an author.

Added Trademark notifications for Ethernet, NFS, and SPARC.

Change Page Added this Change Page.

ii Added paragraphs describing the changes made since the last ver-
sion.

5 Added the multicast technology and distinguished between unicast
and multicast data flows in Figure 2.

6 Changed “via the CD-1.1 protocol” to “via unicast or multicast
CD-1.1 protocol” in the description of Functionality.

6 Changed “Foreman” to “ForeMan” in the Identification bullets.

6 Added “Multicast Sender (MCastProvider)”, “Multicast Receiver
(MCastConsumer)”, and “Missing Frame Detector (FrameAudit)”
to the Identification bullets.

7 Removed the Status of Development section.

7 Added “In 2002 multicast capability was added to CDS CD-1.1. “
to the Background and History section.

7, 8–9 Added a “Network Environment” section to Operating Environ-
ment.

7 Deleted reference to existing implementations in Hardware para-
graph.

11, 34–42 Added a “Software Components” section.
s y s t e m C D - 1 . 1

a r y 2 0 0 3

January 2003 13 Moved reference to Figure 5 to the new Traditional Unicast Opera-
tion section.

13 Added descriptions of unicast and multicast transmission modes
and Figure 4, which illustrates the differences.

14 Moved text into a new section titled “Traditional Unicast Opera-
tion”.

14 Added “Unicast Operation” to Figure 5 caption.

15→17 Moved data parsing paragraph to a new section.

15–16 Added a “Multicast Operation” section.

17 Added C++ as a programming language in the programming Lan-
guage section.

19 Removed “CDS CD-1.1 software uses a one-writer many-reader
paradigm for accessing a Frame Store. This design allows reliable
communication of data between processes.” from ¶ 2.

20 Changed “Design Model” to “Traditional Unicast Design Model”.

20 Added “using unicast transmission technology” in ¶ 1 of the “Tra-
ditional Unicast Design Model” section.

21–28 Added sections to the Design Decisions section for multicasting:
“Multicast Design Model”, “Custom Multicast Solution”, “Data
Provider Provides Reliable Multicasting”, “Unicast Catchup”,
“Separate Multicast and Unicast Catchup Subsystems”, “Reliability
Hosts for Unicast Catchup Subsystem”, “Multicast Connection Ini-
tiation”, “Unicast Catchup Connection Initiation”, and “Multicast
Startup Time”.

29 Changed the functional description of the Connection Manager
from “supports data connections at a data consumer” to “man-
ages data connection requests”.

29 Changed the functional description of the Connection Originator
from “supports data connections by a data provider” to “requests
data connections”.

29 Added Multicast Sender and Multicast Receiver functional descrip-
tions.

30 Placed text in a new “Traditional Unicast Functional Description”
section.

Date Page Change
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

January 2003 31 Added Unicast to the processes and caption of Figure 12 for clarity.

32–34 Added a Multicast Functional Description section.

34 Moved descriptions of the software components from the Func-
tional Description section to a new Software Components section.

34–35 Changed the Connection Manager description to include multicast.

36 Changed “agreement to exchange protocol frames” to “agree-
ment to maintain a connection”.

36–37 Changed the Connection Originator description:

“agreement to exchange protocol frames” → “agreement to
maintain a connection”

description of difference between unicast and multicast added

“data consumer” → “protocol peer”

“Exchange Controller” → “child process”

“Multicast Receiver” included as a child process.

“Option Request Frames and Option Response Frames” →
“connection information”

37 Changed “For example, newly received Data Frames” to “For
example, in a data forwarding configuration, newly received Data
Frames”.

38 Added a Multicast Sender description.

39 Added a Multicast Receiver description.

43 Added “(or UDP for multicast)” to the Interface with External
Users section.

43 Deleted the last bullit in the Interface with Operators section.

45, 135–136 Added “Multicast Protocol” section.

46 Added “The CDS CD-1.1 software has two operational modes,
traditional unicast and multicast.” to the end of the paragraph.

Added “Traditional Unicast Operation” section header.

Added “ for traditional unicast operation at the IDC” to the end of
the first sentence.

46 Changed “daemon is configured to respond to the port” to “dae-
mon responds to the port”.

Date Page Change
s y s t e m C D - 1 . 1

a r y 2 0 0 3

January 2003 47 Changed “forks an Exchange Controller” to “exec ’s an Exchange
Controller”.

47 Added “Traditional Unicast Operation” to the Figure 14 caption.

48 Changed “forks” to “exec s” in two places.

Deleted “In the data consumer (inbound) mode Exchange Control-
ler does not respond to new frame notifications. “

49 Changed “CSS 3.0 data format using information obtained from
the DBMS describing the data provider” to “CSS 3.0 data format”.

49 Changed “forks” to “exec’ s” in two places.

49–53 Added “Multicast Operation” section.

53, 98–103 Added “Multicast Sender” section.

53, 103–109 Added “Multicast Receiver” section.

53, 109–113 Added “Missing Frame Detector” section.

54 Changed “data provider” to “protocol peer”.

54 Added “Authentication Certificates” (D4) to Figure 16.

55 Changed “Connection Request” and “Recognized protocol peer”
bullets:

“This frame is sent via socket communications from a data pro-
vider” → “This frame is received via socket communications
from a protocol peer.”

“Recognized provider data. This information is stored in data-
base tables and is accessed with libgdi library functions when
validating connection requests.” → “Recognized protocol peer.
This information may be stored in database tables and, if so, is
accessed with libgdi library functions when validating connec-
tion requests. In the absence of a DBMS, data are maintained in
files.”

56 Added “Authentication Certificates” (D4) to Figure 17.

Date Page Change
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

January 2003 57 Revised the description of Connection Manager Processing:

“Response” → “Request”

“To establish a server connection Connection Manager obtains a
list of Connection Manager Server hosts by using Database Pro-
cessing” → “For traditional unicast and unicast catchup connec-
tions, a connection server must be selected. Connection
Manager obtains a list of Connection Manager Server hosts by
using either Database Processing or configuration parameters,”

Added a sentence describing how Frame Processing builds a
Connection Response Frame and a paragraph on multicast con-
nections

58 Revised the description of Frame Processing:

“Connection Response Frames” → “Connection Request
Frames”

Added “For traditional unicast and unicast catchup connec-
tions,” before the second set of bullets

option size” → “option type”

59 Deleted reference to Connection Manager and Connection Man-
ager Server in Socket Processing.

59 Replaced “data provider” with “protocol peer” in the second bul-
let of the Output section.

60 Replaced “Connection Response” with “Connection Request” in
the first paragraph of the Control section.

60–61 Replaced “data provider” with “protocol peer” in the bullets of the
Error States section.

61 Changed “to negotiate a network connection for a requesting data
provider” to “to establish traditional unicast or unicast catchup
connections for a requesting protocol peer. Connection Manager
Server is not used for multicast connections”.

62 Added “missing sequence numbers” data store (D3) in Figure 18.

63 Changed the text in the Option Request Frames bullet to include a
catchup operation.

63 Replaced “data provider” with “protocol peer” in the third bullet
and added a bullet on unicast catchup.

Date Page Change
s y s t e m C D - 1 . 1

a r y 2 0 0 3

January 2003 63 Replaced “data provider” with “protocol peer” and “providers”
with “peers”.

64 Added Figure 19.

65 Changed Connection Manager Server process description to
include catchup operation.

65 Added “missing frame sequence numbers” to outputs.

65 Changed Connection Manager Server output descriptions to
include catchup operation.

66 Clarified that inetd starts Connection Manager Server.

66 Replaced “data provider” with “protocol peer” and “providers”
with “peers” in the Interfaces and Error States sections.

67 Added “unsupported option” as a reason for denying a request.

67 Added Missing Frame Detector as a managed process.

67 Redesigned Figure 20.

69 Changed “(stderr) output” to “(stderr) and file output”.

70 Changed “forks” to “execs”.

75 Updated the description of the Conection Originator to include
multicast.

Added “missing sequence numbers” data store and changed
Exchange Controller to child processes in Figure 23.

76 Changed “protocol frames” to “frames” and “Exchange Control-
ler” to “child processes”.

77 Added a step to the Connection Originator processing description.

77 Changed “Exchange Controller” to “child process”.

78 Added “and Multicast Receiver” in two places.

78 Added a failure possibility and changed “Exchange Controller” to
“child process” in Error States.

79 Added “missing sequence numbers” data store and split Connec-
tion Manager Server and Connection Originator in Figure 25.

80 Added “missing sequence numbers” data store and split Connec-
tion Manager Server and Connection Originator in Figure 26.

Date Page Change
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

January 2003 81 Changed “methods of other objects to pass along information
received. The methods provided” to “specific functions to process
this class of frame message. The functions provided”.

81 Changed “methods” to “functions”. Added “(in traditional unicast
operation)”. Deleted “Frame Handler does not resolve inbound
frames (into Exchange Controller). Inbound frames to the host
computer are resolved by Frame Exchange.”

81 Added text describing unicast catchup.

81 Changed “forks” to “exec s”.

82 Added paragraph describing how Exchange Controller exits in uni-
cast catchup.

83 Changed “As part of initialization processing” to “For traditional
unicast initialization”.

83 Added paragraph describing how Frame handler reads frames to
be sent.

84 Changed “forked” to “exec ’d”.

85 Added “, for traditional unicast operation,”.

85 Changed “for“ to “wants to terminate”.

85 Added “ for traditional unicast operation. For unicast catchup
operation, Exchange Controller exits after the missing frames have
been sent and acknowledged.” to the end of the section.

85 Added “and the missing frame sequence numbers file” to the end
of the first paragraph in the Interfaces section.

123 Redrew Figure 37.

136 Moved the second paragraph of the Database Description text into
a new “Database Interface” section.

137 Moved reference to Figure 40 from the end of the second para-
graph to the first sentence of this section.

142 Updated the introductory paragraph for the Connection Require-
ments section.

144 Added descriptions of traditional unicast and uncast catchup oper-
ation to the Connection Originator Requirements.

Date Page Change
s y s t e m C D - 1 . 1

a r y 2 0 0 3

January 2003 145 Added “in traditional unicast and unicast catchup operation”.

146 Changed “by a socket (TCP or UDP) “ to “by a TCP/IP socket”.

154 Added system delivery and performance requirements 95a–95g.

155 Added system requirements for multicast and unicast catchup
capabilities (102, M-1 through M-13, and C-1 through C-2).

157 Clarified how the requirement was fullfilled in requirements 4 and
5.

159 Added the caveat “In traditional unicast and unicast catchup oper-
ation,“ to the How Fullfilled column for requirement 20.

160 Added the caveat “In unicast operation,“ to the How Fullfilled col-
umn for requirements 22 and 24.

172–173 Added system delivery and performance requirements 95a–95g.

175–177 Added system requirements for multicast and unicast catchup
capabilities (102, M-1 through M-13, and C-1 through C-2).

179 Added reference for [Aga01]. Updated references for [DOD94a]
and [DOD94b]. Changed reference to a later document version for
[IDC3.4.1Rev3], [IDC3.4.2Rev0.1], [IDC3.4.3Rev0.2], and
[IDC5.1.1Rev3]

180 Added reference for [SAIC-01/3068]

G1 Added definition for AckNack. Simplified the definition of child
process.

G2 Changed the punctuation for the definition of COTS. Added defi-
nition for cron.

G3 Changed the punctuation for the definition of CTBTO and CSP.

G4 Expanded the definition of fork and changed the punctuation for
the definition of FTP.

G5 Added definitions for IGMP and inetd. Capitalized Protocol in the
definition of IP.

Date Page Change
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u
January 2003 G6 Added definitions for MTU, multicast, and network. Shortened
definition of parent process.

G7 Added definitions for PNack, protocol, and spawn.

G9 Added definitions for SSL, unicast, and WAN. Changed punctua-
tion in the definition of Web.

Date Page Change
s y s t e m C D - 1 . 1

a r y 2 0 0 3

Cont inuous Data Subsys tem CD-1 .1

C o n t i n u o u s D a t a S u

I D C - 7 . 4 . 1 R e v 1 J a n

I D C D O C U M E N T A T I O N

CONTENTS
About this Document i

■ PURPOSE ii

■ SCOPE iv

■ AUDIENCE iv

■ RELATED INFORMATION iv

■ USING THIS DOCUMENT v

Conventions vi

Chapter 1: Overview 1

■ INTRODUCTION 2

■ FUNCTIONALITY 6

■ IDENTIFICATION 6

■ BACKGROUND AND HISTORY 7

■ OPERATING ENVIRONMENT 7

Hardware 7

Network Environment 8

Commercial-Off-The-Shelf Software 9

Chapter 2: Architectural Design 11

■ CONCEPTUAL DESIGN 12

Traditional Unicast Operation 14

Multicast Operation 15

Data Parsing 17

■ DESIGN DECISIONS 17

Programming Language 17

Global Libraries 17

Database 18
b s y s t e m C D - 1 . 1

u a r y 2 0 0 3

I D C D O C U M E N T A T I O N
Interprocess Communication (IPC) 18

File System 19

Traditional Unicast Design Model 20

Multicast Design Model 21

Custom Multicast Solution 21

Data Provider Provides Reliable Multicasting 21

Unicast Catchup 22

Separate Multicast and Unicast Catchup Subsystems 23

Reliability Hosts for Unicast Catchup Subsystem 24

Multicast Connection Initiation 26

Unicast Catchup Connection Initiation 26

Multicast Startup Time 27

Database Schema Overview 28

■ FUNCTIONAL DESCRIPTION 29

Traditional Unicast Functional Description 30

Multicast Functional Description 32

■ SOFTWARE COMPONENTS 34

Connection Manager 34

Data Center Manager 35

Connection Originator 36

Exchange Controller 37

Frame Exchange 38

Multicast Sender 38

Multicast Receiver 39

Data Parser 40

Frame Store Stager 41

Authentication 41

■ INTERFACE DESIGN 42

Interface with Other IDC Systems 42

Interface with External Users 43

Interface with Operators 43

Chapter 3: Detai led Design 45

■ DATA FLOW MODEL 46
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

 C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u

I D C - 7 . 4 . 1 R e v 1 J a n

I D C D O C U M E N T A T I O N
Traditional Unicast Operation 46

Multicast Operation 49

Multicast Subsystem 51

Unicast Catchup Subsystem 51

■ PROCESSING UNITS 53

Connection Manager 54

Input/Processing/Output 54

Output 59

Control 60

Interfaces 60

Error States 60

Connection Manager Server 61

Input/Processing/Output 62

Control 66

Interfaces 66

Error States 66

Data Center Manager 67

Input/Processing/Output 69

Interfaces 72

Error States 74

Connection Originator 75

Input/Processing/Output 77

Control 77

Interfaces 77

Error States 78

Exchange Controller 79

Controller Executive 81

Exchange Interface 82

Frame Handler 83

Input/Processing/Output 84

Control 84

Interfaces 85

Error States 87
b s y s t e m C D - 1 . 1

u a r y 2 0 0 3

I D C D O C U M E N T A T I O N
Frame Exchange 88

Main Loop 90

Time Counter 90

Heartbeat 91

Message Sender 91

Sender 92

Frame I/O 92

Processing Lists 92

Input/Processing/Output 94

Control 95

Interfaces 96

Error States 97

Multicast Sender 98

Processing 99

Error States 103

Multicast Receiver 103

Processing 104

Error States 108

Missing Frame Detector 109

Processing 109

Input/Processing/Output 111

Control 112

Interfaces 112

Error States 112

Data Parser 113

DLParse Exec 115

Process Loop 117

Process Frame 119

Input 119

Output 120

Control 120

Interfaces 121

Error States 121

Frame Store Stager 122
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

 C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u

I D C - 7 . 4 . 1 R e v 1 J a n

I D C D O C U M E N T A T I O N
Input/Processing/Output 123

Control 124

Interfaces 125

Error States 125

Protocol Checker 126

Input/Processing/Output 127

Control 127

Interfaces 127

Error States 128

libfs 128

Input/Processing/Output 129

Control 131

Interfaces 131

Error States 133

libcdo 133

Input/Processing/Output 134

Control 134

Error States 135

■ MULTICAST PROTOCOL 135

Data Packet Format 135

PNack Packet Format 136

■ DATABASE DESCRIPTION 136

Database Interface 136

Database Design 137

Chapter 4: Requirements 141

■ INTRODUCTION 142

■ FUNCTIONAL REQUIREMENTS 142

Connection Manager Requirements 142

Data Center Manager Requirements 143

Connection Originator Requirements 144

Exchange Controller Requirements 145

Frame Exchange Requirements 146

Data Parser Requirements 147
b s y s t e m C D - 1 . 1

u a r y 2 0 0 3

I D C D O C U M E N T A T I O N
Frame Store Stager Requirements 148

Authentication Signing Requirements 149

Signature Authentication Requirements 150

Frame Store Requirements 151

libcdo Requirements 152

■ SYSTEM REQUIREMENTS 153

Multicast Subsystem Requirements 155

Unicast Catchup Subsystem Requirements 156

■ REQUIREMENTS TRACEABILITY 156

References 179

Glossary G1

Index I1
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

 C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

Cont inuous Data Subsys tem CD-1 .1

C o n t i n u o u s D a t a S u

I D C - 7 . 4 . 1 R e v 1 J a n

I D C D O C U M E N T A T I O N

FIGURES
FIGURE 1. IDC SOFTWARE CONFIGURATION HIERARCHY 3

FIGURE 2. RELATIONSHIP OF CONTINUOUS DATA SUBSYSTEM CD-1.1 TO

OTHER SOFTWARE UNITS OF DATA SERVICES CSCI 5

FIGURE 3. REPRESENTATIVE HARDWARE CONFIGURATION FOR CDS CD-1.1 8

FIGURE 4. UNICAST VERSUS MULTICAST COMMUNICATION 13

FIGURE 5. OBJECT MODEL OF CDS CD-1.1 UNICAST OPERATION 14

FIGURE 6. OBJECT MODEL OF CDS CD-1.1 MULTICAST OPERATION 15

FIGURE 7. RELIABLE MULTICAST SUBSYSTEM 22

FIGURE 8. SEPARATE MULTICAST AND UNICAST CATCHUP SUBSYSTEMS 23

FIGURE 9. RELIABILITY HOSTS FOR UNICAST CATCHUP SUBSYSTEM 25

FIGURE 10. MULTICAST CONNECTION INITIATION 26

FIGURE 11. UNICAST CATCHUP CONNECTION INITIATION 27

FIGURE 12. FUNCTIONAL DESIGN OF CDS CD-1.1 TRADITIONAL UNICAST OPERATION 31

FIGURE 13. FUNCTIONAL DESIGN OF CDS CD-1.1 MULTICAST OPERATION 33

FIGURE 14. DATA FLOW MODEL OF CDS CD-1.1 TRADITIONAL UNICAST OPERATION 47

FIGURE 15. DATA FLOW MODEL OF CDS CD-1.1 MULTICAST OPERATION 50

FIGURE 16. CONNECTION MANAGER CONTEXT 54

FIGURE 17. CONNECTION MANAGER COMPONENTS 56

FIGURE 18. CONNECTION MANAGER SERVER CONTEXT 62

FIGURE 19. CONNECTION MANAGER SERVER COMPONENTS 64

FIGURE 20. DATA CENTER MANAGER CONTEXT 67

FIGURE 21. DATA CENTER MANAGER PROCESSING COMPONENTS 68

FIGURE 22. DATA CENTER MANAGER INTERNAL CONTROL FLOW 74

FIGURE 23. CONNECTION ORIGINATOR CONTEXT 75

FIGURE 24. CONNECTION ORIGINATOR INTERNAL DATA AND CONTROL FLOW 76
b s y s t e m C D - 1 . 1

u a r y 2 0 0 3

I D C D O C U M E N T A T I O N
FIGURE 25. EXCHANGE CONTROLLER CONTEXT 79

FIGURE 26. EXCHANGE CONTROLLER DATA FLOW 80

FIGURE 27. FRAME EXCHANGE CONTEXT 88

FIGURE 28. FRAME EXCHANGE COMPONENTS 89

FIGURE 29. MULTICAST SENDER CONTEXT 98

FIGURE 30. MULTICAST SENDER DATA AND CONTROL FLOW 99

FIGURE 31. MULTICAST RECEIVER CONTEXT 104

FIGURE 32. MULTICAST RECEIVER DATA AND CONTROL FLOW 105

FIGURE 33. MISSING FRAME DETECTOR CONTEXT 109

FIGURE 34. MISSING FRAME DETECTOR DATA AND CONTROL FLOW 110

FIGURE 35. DATA PARSER CONTEXT 114

FIGURE 36. DATA PARSER DATA FLOW 115

FIGURE 37. FRAME STORE STAGER CONTEXT 123

FIGURE 38. FRAME STORE STAGER DATA FLOW 124

FIGURE 39. PROTOCOL CHECKER CONTEXT 126

FIGURE 40. CDS CD-1.1 TABLE RELATIONSHIPS 138
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

 C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

Cont inuous Data Subsys tem CD-1 .1

C o n t i n u o u s D a t a S u

I D C - 7 . 4 . 1 R e v 1 J a n

I D C D O C U M E N T A T I O N

TABLES
TABLE I: DATA FLOW SYMBOLS vi

TABLE II: ENTITY-RELATIONSHIP SYMBOLS vii

TABLE III: TYPOGRAPHICAL CONVENTIONS vii

TABLE 1: DATABASE TABLES USED BY CDS CD-1.1 28

TABLE 2: DATA CENTER MANAGER JOB TEMPLATE ATTRIBUTES 70

TABLE 3: DATA CENTER MANAGER EVENTS 71

TABLE 4: FORMAT OF DATA PACKET 135

TABLE 5: FORMAT OF PNACK PACKET 136

TABLE 6: DETAILED DATABASE USAGE BY CDS CD-1.1 139

TABLE 7: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
CONNECTION MANAGER 157

TABLE 8: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
DATA CENTER MANAGER 158

TABLE 9: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
CONNECTION ORIGINATOR 159

TABLE 10: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
EXCHANGE CONTROLLER 160

TABLE 11: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
FRAME EXCHANGE 161

TABLE 12: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
DATA PARSER 163

TABLE 13: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
FRAME STORE STAGER 165

TABLE 14: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
AUTHENTICATION SIGNING 166

TABLE 15: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
SIGNATURE AUTHENTICATION 167
b s y s t e m C D - 1 . 1

u a r y 2 0 0 3

I D C D O C U M E N T A T I O N
TABLE 16: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
FRAME STORE 168

TABLE 17: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
LIBCDO REQUIREMENTS 170

TABLE 18: TRACEABILITY OF SYSTEM REQUIREMENTS 171
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

 C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N
About th i s Document

This chapter describes the organization and content of the document and includes

the following topics:

■ Purpose

■ Scope

■ Audience

■ Related Information

■ Using this Document
s y s t e m C D - 1 . 1

a r y 2 0 0 3 i

S o f t w a r e
I D C D O C U M E N T A T I O N

ii
About th i s Document

PURPOSE

This document describes the design and requirements of the Continuous Data

Subsystem CD-1.1 (CDS CD-1.1) software of the International Data Centre (IDC).

The software is a computer software component (CSC) of the Data Services Com-

puter Software Configuration Item (CSCI). This document provides a basis for

implementing, supporting, and testing the software.

This document is Revision 1 of Continuous Data Subsystem CD-1.1, originally pub-

lished in March 2001. The following changes were made to incorporate multicast

capability:

■ General

The publication date and document number in the footers was changed

to reflect the revision. Change bars (vertical lines) were added to identify

new or revised material. The Notice Page was changed to include a new

SAIC number. Terminology changes were made throughout to reflect tra-

ditional unicast capability (original functionality) and new multicast and

unicast catchup capabilities.

■ About this Document

A description of the changes to the document was added.

■ Chapter 1: Overview

Removed the Status of Development section. Added three components

for multicasting to Identification. Added Network Environment to Oper-

ating Environment. Minor revisions were made throughout to incorpo-

rate additional capability.
J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
■ Chapter 2: Architectural Design

Unicast and multicast transmission modes and operation were added to

Conceptual Design. Decisions relating to multicasting were added to

Design Decisions. Multicast Functional Description was added to Func-

tional Description. Software Components was elevated to its own major

section and Multicast Sender and Multicast Receiver were added. Connec-

tion Originator, Connection Manager, Exchange Controller, and Frame

Exchange were modified to reflect new functionality related to multicast

operation.

■ Chapter 3: Detailed Design

Data Flow Model was revised to include Multicast Operation consisting

of multicast and unicast catchup subsystems. Three components were

added to Processing Units, Multicast Sender, Multicast Receiver, and Miss-

ing Frame Detector. Connection Originator, Connection Manager, Connec-

tion Manager Server, Exchange Controller, and Frame Exchange were

modified to reflect new functionality related to multicast operation. Mul-

ticast Protocol was added containing descriptions of UDP data and

PNack packets.

■ Chapter 4: Requirements

System requirements were added for multicasting and unicast catchup

capabilities (102, M-1 through M-13, and C-1 through C-2). System

delivery and performance requirements were added (95a through 95g).

Component descriptions and “How Fulfilled” information in the require-

ments traceability matrices were modified to accommodate new system

requirements.

■ References

References were added for [Aga01] and [SAIC-01/3068]. Other refer-

ence were updated to reflect the current versions.

■ Glossary

Terms and definitions were added for cron, IGMP, inetd, MTU, multicast,

network, PNack, protocol, spawn, SSL, UDP, unicast, and WAN.
iii

s y s t e m C D - 1 . 1

a r y 2 0 0 3

iv

▼ About this Document

S o f t w a r e
I D C D O C U M E N T A T I O N
SCOPE

Continuous Data Subsystem CD-1.1 software is identified as follows:

Title: Continuous Data Subsystem CD-1.1

Abbreviation: CDS CD-1.1

This document describes the architectural and detailed design of the CDS CD-1.1

software including its functionality, components, data structures, high-level inter-

faces, method of execution, and underlying hardware. Additionally, this document

specifies the requirements of the software and its components. This information is

modeled on the Data Item Description for Software Design Descriptions [DOD94a]

and Software Requirements Specification [DOD94b]. Software that supports the

CD-1.0 (Alpha) protocol is not addressed by this document.

AUDIENCE

This document is intended for all engineering and management staff concerned

with the design and requirements of all IDC software in general and of CDS CD-1.1

in particular. The detailed descriptions are intended for programmers who develop,

test, or maintain CDS CD-1.1.

RELATED INFORMATION

The following documents complement this document:

■ Formats and Protocols for Continuous Data CD-1.1 [IDC3.4.3Rev0.2]

■ Continuous Data Subsystem CD-1.1 Software User Manual [IDC6.5.18]

See References for a list of documents that supplement this document.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
USING TH IS DOCUMENT

This document is part of the overall documentation architecture for the IDC. It is

part of the Software category, which describes the design of the software. This

document is organized as follows:

■ Chapter 1: Overview

This chapter provides a high-level view of CDS CD-1.1, including its func-

tionality, components, background, status of development, and current

operating environment.

■ Chapter 2: Architectural Design

This chapter describes the architectural design of CDS CD-1.1, including

its conceptual design, design decisions, functions, and interface design.

■ Chapter 3: Detailed Design

This chapter describes the detailed design of CDS CD-1.1, including its

data flow, software units, and database design.

■ Chapter 4: Requirements

This chapter describes the general, functional, and system requirements

for CDS CD-1.1. Traceability tables define how the general and functional

requirements are met.

■ References

This section lists the sources cited in this document.

■ Glossary

This section defines the terms, abbreviations, and acronyms used in this

document.

■ Index

This section lists topics and features provided in the document along with

page numbers for reference.
v

s y s t e m C D - 1 . 1

a r y 2 0 0 3

vi

▼ About this Document

S o f t w a r e
I D C D O C U M E N T A T I O N
Convent ions

This document uses a variety of conventions, which are described in the following

tables. Table I shows the conventions for data flow diagrams. Table II shows the

conventions for entity-relationship diagrams. Table III lists typographical conven-

tions.

TABLE I: DATA FLOW SYMBOLS

Description1

1. Symbols in this table are based on Gane-Sarson conventions.

Symbol

process

external source or sink of data

data store

D = disk store

Db = database store

control flow

data flow

decision

#

 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
TABLE II: ENTITY-RELATIONSHIP SYMBOLS

Description Symbol

One A maps to one B.

One A maps to zero or one B.

One A maps to many Bs.

One A maps to zero or many Bs.

database table

TABLE III: TYPOGRAPHICAL CONVENTIONS

Element Font Example

database tables bold dlfile

database attributes

processes, software units,
and libraries

user-defined arguments and
variables used in parameter
(par) files or program com-
mand lines

titles of documents

 italics dlid

ConnMgr

run_idc_dcmgr <hostname>

Continuous Data Subsystem CD-1.1

computer code and output

filenames, directories, and
websites

text that should be typed
exactly as shown

courier [info]:Parameter inetd - 1

DLlog.log

ps -fu <cds-user-name>

A B

A B

A B

A B

tablename

primary key
foreign key

attribute 1
attribute 2
…
attribute n
vii

s y s t e m C D - 1 . 1

a r y 2 0 0 3

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 1: Ove rv iew

This chapter provides a general overview of the CDS CD-1.1 software and includes

the following topics:

■ Introduction

■ Functionality

■ Identification

■ Background and History

■ Operating Environment
s y s t e m C D - 1 . 1

a r y 2 0 0 3 1

S o f t w a r e
I D C D O C U M E N T A T I O N

2

Chapter 1: Ove rv iew

INTRODUCT ION

The software of the IDC acquires time-series and radionuclide data from stations of

the International Monitoring System (IMS) and other locations. These data are

passed through automatic and interactive processing, which culminates in the esti-

mation of location and in the origin time of events (earthquakes, volcanic erup-

tions, and so on) in the earth, including its oceans and atmosphere. The results of

the processing are distributed to States Parties and other users by various means.

Approximately one million lines of developmental software are spread across six

computer software configuration items (CSCIs) of the software architecture. One

additional CSCI is devoted to run-time data of the software. Figure 1 shows the

logical organization of the IDC software. The Data Services CSCI receives, stores,

and distributes data through the following computer software components (CSCs):

■ Continuous Data Subsystem

This software acquires time-series data according to two standard proto-

cols and forwards the data to external users ([IDC3.4.2Rev0.1] and

[IDC3.4.3Rev0.2]).

■ Message Subsystem

This software exchanges data in response to user requests. The data are

formatted according to a standard protocol and exchanged through

UNIX mail (see [IDC3.4.1Rev3]). This software also provides the inter-

face to mail for the Retrieve and Subscription Subsystems.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
FIGURE 1. IDC SOFTWARE CONFIGURATION HIERARCHY

Automatic
Processing

Interactive
Processing

Distributed
Processing

Data
Services

System
Monitoring

Station
Processing

Network
Processing

Atmospheric
Transport

Time-series
Analysis

Bulletin Process
Monitoring
and Control

Application
Services

Continuous
Data
Subsystem

Message
Subsystem

Subscription
Subsystem

Data Services
Utilities and

Data
Archiving

Database
Tools

Configuration
Management

Performance
Monitoring

System
Monitoring

IDC Software

Retrieve
Subsystem

Web
Subsystem

Data for
Software

Interactive
Data

System
Monitoring
Data

Automatic
Processing

Distributed
Processing
Data

Data
Services

Data
Management

COTS
Data

Environmental
Data

Post-
location
Processing

Time-series
Libraries

Operational
Scripts

Interactive
Tools

Distributed
Processing
Scripts

Data
Management

Database
Libraries

Data

Data

Event
Screening

Time-series
Tools

Libraries

Radionuclide
Processing

Authentication
Services

Analysis
Libraries

Radionuclide
Analysis

Distributed
Processing
Libraries
3

s y s t e m C D - 1 . 1

a r y 2 0 0 3

4

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
■ Retrieve Subsystem

This software prepares messages, formatted according to the standard

protocol, that retrieve segments of data from stations of the IMS auxil-

iary seismic network (see [IDC3.4.1Rev3]). The software also parses the

response messages. The Message Subsystem exchanges the messages.

■ Subscription Subsystem

This software maintains a subscriber database and prepares the regular

data products for delivery to subscribers. The Message Subsystem

receives the subscription requests and delivers the subscription products.

■ Data Services Utilities and Libraries

This software consists of utilities used by data services operators and

libraries common to data services.

■ Web Subsystem

This software runs the IDC website.

■ Authentication Services

This software provides data signing and verification services to Data Ser-

vices subsystems using the Digital Signature Algorithm (DSA).

Figure 2 shows the relationship of the CDS CD-1.1 to the other components of the

other CSCIs. Figure 2 indicates that the CDS CD-1.1 is responsible for receiving

CD-1.1 data from IMS stations and the CDS CD-1.0 is responsible for receiving

CD-1.0 data. In this respect the Continuous Data Subsystem (CDS) is a “front-

end” to the Data Services CSCI and the IMS by providing the processing for

acquiring data. The figure also shows the CDS as the component that is responsi-

ble for forwarding CD-1.1 data to data centers of State Signatories. The Data Ser-

vices CSCI contains other components besides CDS that are capable of receiving

and sending data, most notably the Message Subsystem. However, the CDS is

concerned with the near-real-time stream of IMS data, whereas other components

are more concerned with asynchronous request/response type flows.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
FIGURE 2. RELATIONSHIP OF CONTINUOUS DATA SUBSYSTEM CD-1.1 TO

OTHER SOFTWARE UNITS OF DATA SERVICES CSCI

a
IMS

Continuous
Data Stations

Db1
Operations
database

f

forwarded CD-1.0 data

b
State Party

supplemental
data

Archive
Subsystem

6

Web
Subsystem

5
web
users

g
product

subscriber

h
AutoDRM
requester

Subscription
Subsystem

7

Message
Subsystem

3

d
IMS

auxiliary
seismic station

request

response

data
message

request
message

formatted
subscription product

subscription request

c
IMS

radionuclide
station

Db2
Archive
database

event
list

Retrieve
Subsystem

4

radionuclide
message

 origin
message

formatted
 request

parsed
data

product
data

register
subscription

queued
product data

e
State Signatory

receiving
continuous

data

subscription
data

Data
Continuous

Subsystem
CD-1.0

2

Data
Continuous

Subsystem
CD-1.1

1

unicast
CD-1.0

forwarded unicast

unicast catchup
CD-1.1 data

CD-1.1 data
unicast
CD-1.1

multicast
CD-1.1

data

data

data
5

s y s t e m C D - 1 . 1

a r y 2 0 0 3

6

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
FUNCT IONALITY

The CDS CD-1.1 provides data centers with the ability to receive time-series data

from providing sources via unicast or multicast CD-1.1 protocol. After receipt, the

data are authenticated, forwarded, parsed, and stored. Authentication checks the

validity of the data using the digital signature sent in the CD-1.1 frames and public

keys available for those data. Forwarding sends data packets/frames received from

data providers to other data centers (data consumers). Parsing converts the CD-

1.1 frames into the CSS 3.0 format for use by other processing components of the

system.

IDENT IF ICAT ION

CDS CD-1.1 components are identified as follows:

■ Connection Manager (ConnMgr)

■ Data Center Manager (ForeMan)

■ Connection Originator (ConnOrig)

■ Exchange Controller (ExCltr)

■ Frame Exchange (FrameEx)

■ Multicast Sender (MCastProvider)

■ Multicast Receiver (MCastConsumer)

■ Missing Frame Detector (FrameAudit)

■ Data Parser (DLParse)

■ Frame Store Stager (FSstage)

■ Protocol Checker (ProtoCheck)

■ libfs

■ libcdo
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
BACKGROUND AND H ISTORY

The software to support the CD-1.1 protocol was developed by Science Applica-

tion International Corporation (SAIC) as a reference implementation of a Continu-

ous Data Subsystem for handling the new generation protocol. The CDS CD-1.1

design for the Data Services CSCI was developed from that reference implementa-

tion in 1999–2000. In 2002 multicast capability was added to CDS CD-1.1. CDS

CD-1.1 was first delivered for operational use in the summer of 2000 as an element

of the PIDC at the Center for Monitoring Research (CMR) in Arlington, Virginia,

U.S.A. CDS CD-1.1 was delivered to the IDC of the Comprehensive Nuclear-Test-

Ban Treaty Organization (CTBTO) IDC in Vienna, Austria, in December 2000. At

the time of the initial delivery no IMS sites were capable of participating in the CD-

1.1 protocol. However, it is expected that all new sites and sites undergoing

upgrades will use the CD-1.1 protocol. As a result, migration to the use of the CD-

1.1 protocol and the CDS CD-1.1 will be gradual.

OPERAT ING ENVIRONMENT

The following paragraphs describe the hardware, network environment, and com-

mercial-off-the-shelf (COTS) software required to operate the CDS CD-1.1.

Hardware

The CDS CD-1.1 software is designed to run on UNIX-type computers such as

those produced by Sun Microsystems with the Solaris 2.7 operating system. A CDS

CD-1.1 host requires a minimum of 128 MB of memory and a minimum of 9 GB of

local disk storage. The software requires processing capabilities equivalent to a Sun

Microsystems Ultra 60 with two 250 MHz processors. CDS CD-1.1 hosts also

require connection to a Local Area Network (LAN) on a minimum of a 10-base T

line (providing a minimum of 10 M-bits per second transmission rates).

The CDS CD-1.1 is predominately concerned with the movement of data, and

there are no requirements to have graphical display hardware. However, as with

most software systems, some pieces of information are desirable to monitor. For

this purpose, CDS CD-1.1 hosts must be accessible (via the LAN) to a monitor. CDS
7

s y s t e m C D - 1 . 1

a r y 2 0 0 3

8

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
CD-1.1 requires the availability of a Database Management System (DBMS) such

as ORACLE 8i via the LAN. Figure 3 shows a representative hardware configura-

tion with processing distributed over three hosts (CDS-A, CDS-B, and CDS-C),

access to a DBMS, and a monitor.

FIGURE 3. REPRESENTATIVE HARDWARE CONFIGURATION FOR CDS CD-1.1

Network Env i ronment

For unicast operation, the implementation connects to the LAN via ethernet using

the Transmission Control Protocol/Internet Protocol (TCP/IP). For multicast opera-

tion, the implementation uses the User Datagram Protocol (UDP) IP protocol.

TCP/IP provides guaranteed data delivery and data order. Sender and receiver

monitor

CDS-A

128 MB RAM

9 GB Storage
Disk

CDS-B

128 MB RAM

SPARC Ultra 60

SPARC Ultra 60

CDS-C

128 MB RAM

9 GB Storage

SPARC Ultra 60

Disk

9 GB Storage
Disk

Lo
ca

l A
re

a
N

et
w

or
k

DBMS

ORACLE 8i
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
rates are matched. TCP/IP also provides network congestion control by automati-

cally backing off on transmission rates to accommodate other network traffic.

Conversely, UDP provides little error recovery making reliable data delivery more

of a challenge.

Routers on the LAN and those that interface to the WAN need to be multicast

capable. The UDP and TCP/IP protocols may co-exist on the same LAN connec-

tions. However, there is a danger of UDP overwhelming the network since it lacks

the adaptive transmission rate control provided by TCP. This danger is addressed

by using rate-based flow control for the UDP-based multicasting traffic. In multi-

cast operation the UDP protocol is used both for the multicasting of data packets

and for the unicasting of negative acknowledgments. The negative acknowledg-

ment and other mechanisms provide strong best-effort reliability for multicast

operation. At the network layer, multicast group membership is managed by the

standard IGMP (Internet Group management) protocol that operates between

CDS hosts and their LAN routers.

Commerc i a l -Off -The-She l f So f tware

CDS CD-1.1 software requires the use of a DBMS and has been developed using

the ORACLE 8i system. ORACLE 8i is used without modification in its standard

configuration and is available from licensed vendors. The DBMS is used by the CDS

CD-1.1 for two objectives: to simplify the management of incoming connections

and to manage the descriptions of received (and parsed) time-series signal data.

The OpenSSL library is used to digitally sign and authenticate frames by the CDS

CD-1.1. This library is publicly available via File Transfer Protocol (FTP) download

on the Internet.
9

s y s t e m C D - 1 . 1

a r y 2 0 0 3

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 2: A r ch i tec tu ra l Des i gn

This chapter describes the architectural design of the CDS CD-1.1 and includes the

following topics:

■ Conceptual Design

■ Design Decisions

■ Functional Description

■ Software Components

■ Interface Design
s y s t e m C D - 1 . 1

a r y 2 0 0 3 11

S o f t w a r e
I D C D O C U M E N T A T I O N

12
Chapter 2: A r ch i tec tu ra l Des i gn

CONCEPTUAL DES IGN

The CD-1.1 protocol [IDC3.4.3Rev0.2] is implemented by the Continuous Data

Subsystem. The CD-1.1 protocol is a set of formats, protocols, and policies that

define how to send continuous time-series data from one computer to another.

Physical transmission of data may occur over traditional land lines, through radio

frequency (RF) connections, and via satellite links. Transmissions over these physi-

cal media are in the form of Data Frames constructed and exchanged according to

the protocol defined in [IDC3.4.3Rev0.2]. In the context of nuclear treaty monitor-

ing, these data are acquired from seismic, hydroacoustic, infrasonic, or other envi-

ronmental sensors. CDS CD-1.1 application software executes at the IDC and at

the Prototype International Data Centre (PIDC). CDS CD-1.1 software is responsi-

ble for acquiring CD-1.1 data from providers, forwarding data to subscribing

National Data Centers (NDCs), and making data available for signal processing and

analysis software at the data center. The CDS also supports the CD-1.0 protocol

[IDC3.4.2Rev0.1]. The CDS CD-1.1 software is cooperative and unobtrusive with

the operation of CD-1.0 software components and vice versa. The components of

the CDS that support CD-1.0 protocol are not addressed by this document.

The design of the CDS CD-1.1 is based on the concept of providing accountable,

robust handling of protocol frames both as a data consumer and as a data pro-

vider. Pursuit of this objective has produced an architecture that provides transac-

tional processing among independent components. In particular, data receiving,

parsing, and forwarding activities are decoupled from each other in this design.

Decoupling allows intermittent failures in one processing element of the CDS CD-

1.1 to occur and be resolved without impacting others.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
The conceptual design of the CDS CD-1.1 is that of a hands-off system supporting

connections for data providers and data consumers. The software requires that

configuration information be provided to describe data providers and data con-

sumers. This information is used to establish a run-time environment for process-

ing, which must occur before a connection can be opened and data can be

received.

The CDS CD-1.1 provides two transmission modes, unicast and multicast. Figure 4

illustrates differences in data flow between unicast and multicast transmission. Uni-

cast transmission provides direct one-to-one connections between data providers

and data consumers where individual data streams are transmitted on each con-

nection. Multicast transmission provides one-to-many connections allowing a data

provider to send a single data stream to multiple data consumers at the same time.

Data providers and data consumers can operate in both unicast and multicast

mode simultaneously.

FIGURE 4. UNICAST VERSUS MULTICAST COMMUNICATION

Multicast

Unicast

1. Adapted from Agarwal, October, 2001.
13

s y s t e m C D - 1 . 1

a r y 2 0 0 3

14

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Trad i t iona l Un i cas t Opera t ion

Figure 5 presents a conceptual view of the CDS CD-1.1 traditional unicast opera-

tion. A provider connects to the CDS CD-1.1 by attempting a connection to a pre-

scribed host computer. Components of the CDS CD-1.1 are then invoked to handle

the request according to the CD-1.1 protocol. Assuming that the protocol

exchanges are correctly executed, the provider proceeds to deliver protocol Data

Frames over the connection. A connection remains open indefinitely or until a ter-

minating condition is encountered. If a connection is lost, then the connection may

be re-established after a brief wait.

FIGURE 5. OBJECT MODEL OF CDS CD-1.1 UNICAST OPERATION

When Data Frames are received from a provider they are written to disk files that

provide a durable store called a Frame Store. Frames are not considered received

until a successful store operation has occurred. Acknowledging store operations

enables the system to avoid data loss during periods of intermittent communica-

tion or interruptions of software operation.

disk loopsD2

run-time
D1 configuration

signal data

provider names,
parameter values

directory and filenames provider descriptions

waveform

signal data
waveform

connect request,
provider

data
consumer

data

and Analysis
Processing

Signal

CDS CD-1.1

1

ORACLE
Db database

flow of data

descriptions

descriptions

connect request,
flow of data
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Connections to forwarding destinations are established and managed by CDS CD-

1.1 software. After a forwarding connection is established, the software sends data

from the receive Frame Store to the data consumer. Like the connection to data

providers, established connections are held open indefinitely. Should a connection

terminate, CDS CD-1.1 automatically attempts to re-establish it.

Mul t i ca s t Opera t ion

In multicast operation, the conceptual design of the CDS CD-1.1 is to provide reli-

able multicast capability allowing a data provider to send a single stream of data to

multiple data consumers. Unicast equivalent reliability is achieved through unicast

catchup connections whereby a data consumer requests and receives data missed

from the multicast transmission. Figure 6 presents a conceptual view of the CDS

CD-1.1 multicast operation.

FIGURE 6. OBJECT MODEL OF CDS CD-1.1 MULTICAST OPERATION

disk loopsD2

run-time
D1 configuration

signal data

provider names,
parameter values

directory and filenames provider descriptions

waveform

signal data
waveform

provider
data consumer

data

and Analysis
Processing

Signal

CDS CD-1.1

1

ORACLE
Db databasedescriptions

descriptions

multicast
packet data

unicast catchup
connect requests,

frame requests

consumers
data

frame data

frame data

multicast
connect requests,
packet requests

multicast
connect requests,
packet requests

unicast catchup
connect requests,

frame requests
15

s y s t e m C D - 1 . 1

a r y 2 0 0 3

16

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
A data consumer requests a multicast connection from a data provider. The pro-

vider responds with the multicast connection information. The data consumer joins

the group and starts listening to the ongoing multicast transmission. The multicast

transmission contains near real time CD-1.1 frames broken into smaller UDP data

packets. The data consumer reconstructs CD-1.1 frames from data packets.

Simple multicasting provides best-effort data delivery. CDS CD-1.1 provides reliable

multicasting, or “better” best effort data delivery, through packet-level error

detection. Data consumers detect missing packets and send packet retransmission

requests back to the station data provider. The data provider collects retransmis-

sion requests from data consumers and remulticasts requested packets to the entire

multicast group. All data consumers receive reliable multicast service directly from

the data provider, including retransmission of missing data packets, meeting most

of their data needs

A secondary data transmission mechanism, unicast catchup, works in conjunction

with the reliable multicast service to provide highly reliable data delivery equivalent

to that of traditional unicast operation. Error detection is performed at the frame

level, rather than at the packet level as in the multicast transmission. CDS CD-1.1

detects missing frames not provided through the multicast transmission and

requests a one-to-one unicast catchup connection from the data provider to

retrieve the missing frames. After missing frames have been received, the connec-

tion is closed.

CDS CD-1.1 allows data consumers to specify a reliability host other than the mul-

ticast data provider to service catchup connections. Multiple independent reliability

hosts may be established at different locations allowing many more data consum-

ers to be serviced than can be serviced by a single reliability host. Thus, the IDC

may be the reliability host for some data consumers, while other reliability hosts

support different sets of data consumers.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Data Pa r s ing

Data parsing software extracts data from recently-received frames to produce

waveform files and DBMS waveform description (wfdisc) records. The received

data are made available for signal processing and analysis software by this process.

This processing is independent of frame transmit mode.

DES IGN DEC IS IONS

The design of CDS CD-1.1 components takes advantage of existing software librar-

ies, methods, and configurations currently in use by the operational software sys-

tem. The reuse and commonality of the software aids in both the maintainability

and operability of the CDS CD-1.1. The design decisions in the following sections

pertain to CDS CD-1.1.

Prog ramming Language

All of the software components in CDS CD-1.1 are written in the C and C++ pro-

gramming languages.

Globa l L ib ra r i e s

The software of CDS CD-1.1 uses the following shared development libraries:

■ libas digital signature signing and authentication

■ libcancomp Canadian compression/decompression processing

■ libframelog specialized logging for frames

■ libgdi generic DBMS interface

■ liblog run-time logging software

■ libpar run-time configuration parameter reading

■ libstdtime standard time reading and formatting

■ libtable hash table implementation

■ libwfm waveform output/writing
17

s y s t e m C D - 1 . 1

a r y 2 0 0 3

18

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
■ libwio input/output (I/O) of waveform data

CDS CD-1.1 software uses standard code libraries distributed with the C program-

ming language compiler and the UNIX (Solaris) operating system. These libraries

are used in their delivered form and are not listed in this document. CDS CD-1.1

software is also linked to the following public domain library for use in authentica-

tion processing:

■ openSSL secure socket layer software

Database

CDS CD-1.1 software uses an ORACLE 8i DBMS to aid in the management of con-

nection information and to store descriptions of waveform data parsed from

received frames. All database queries are affected through the shared library libgdi.

This library isolates the software from explicit details of DBMS interaction by pro-

viding a generic front-end.

I n te rp rocess Commun ica t ion (IPC)

The design of the CDS CD-1.1 software components attempts to decouple pro-

cesses from one another. As a result, direct interprocess communication is limited.

The following paragraphs identify the communication methods that are used.

UNIX socket interprocess communication (IPC) is used as the communication

method for transporting CD-1.1 protocol frames between data providers and data

consumers. Additionally, sockets are used by Connection Manager to distribute

inbound connections to Connection Manager Servers on the LAN at the data center.

UNIX pipes are used for communication between Frame Exchange and Exchange

Controller components of the CDS CD-1.1, which always execute on the same host

processor. The IPC pipes between these components are used to pass “frame mes-

sages” for coordinating frames sent and acknowledging those received. In the

event of a terminating condition the pipes are also used to signal a graceful shut-

down.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
UNIX data streams are used to provide information from a child process to the par-

ent process. This method is used with the system-allocated standard out (stdout)

and standard error (stderr) streams for processes that execute on a single host

computer and that have a parent-child relationship.

A Frame Store is a repository for saving protocol frames and is used as an interface

medium for sharing data between processes. Processes gain access to a Frame

Store through Application Program Interface (API) calls in the Frame Store soft-

ware library.

The DBMS and file system are used as an interface for providing waveform data

and waveform descriptions to other IDC applications. This method of providing an

interface to these data was employed by previous generations of CDS software.

The CDS CD-1.1 complies with existing definitions and methodologies so as to not

influence the processing of other system elements.

F i l e Sys tem

The file system for CDS CD-1.1 host computers has directory hierarchies with space

for parameter files, run-time data stores, and process logs. All of the CDS CD-1.1

processes take run-time configuration parameters and environment variables as

input. Values for these inputs are provided in a series of parameter files, which are

contained in the file system. Configuration information is usually stored in a com-

mon location for some, if not all, of the CDS CD-1.1 processes. If a common loca-

tion is used, the file system with the parameter files must be Network File System

(NFS) mounted by each of the CDS CD-1.1 host computers.

Frame Stores are implemented as directories and files in the file system. Frame

Stores are used by CDS CD-1.1 software as an interface mechanism as well as a

place for retaining processed data and audit information. The file systems that

house Frame Stores are usually NFS mounted by a number of host computers. NFS

mounting distributes the CDS CD-1.1 processing load over multiple computers.
19

s y s t e m C D - 1 . 1

a r y 2 0 0 3

20

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Each process of the CDS CD-1.1 creates a log file for writing messages related to

process execution. Log files are American Standard Code for Information Inter-

change (ASCII) text files, which in normal circumstances are accessed relatively

infrequently. A log file is best written to a file system resident on the host com-

puter.

Trad i t iona l Un i cas t Des i gn Mode l

The CDS CD-1.1 software suite is designed to provide an auditable, robust system

for delivering, parsing, and forwarding time-series data using unicast transmission

technology. As the data receiving front-end of the IDC, the CDS CD-1.1 is efficient

and responsive enough to keep up with the flow of data from hundreds of sources.

CDS CD-1.1 software also reacts to failures in communications with peers in

remote geographic areas. The design is noteworthy in two regards: a transactional

paradigm is employed, and independent components are responsible for various

processing activities.

The transactional model provides positive feedback to protocol participants regard-

ing frame deliveries and facilitates the ability to audit protocol activity with a given

protocol peer. With positive feedback, the progress of data delivery is declared only

after it has occurred. For example, an acknowledgement for a frame receipt is not

generated until after the frame is successfully saved to the Frame Store. This also

supports data recovery from unexpected communication or application software

terminations.

The CDS CD-1.1 design contains independent processing components for imple-

menting various CDS CD-1.1 capabilities. This design enhances the robustness of

the system by distributing needed processing among processing components. In

such a design, if a particular component unexpectedly terminates, other capabili-

ties of CDS CD-1.1 continue to be provided in a relatively unaffected fashion. Dis-

tributing the processing capabilities over several hosts also allows resource-

intensive processing to be segregated, which increases system throughput and

responsiveness (resources include I/O processing, computation, and DBMS trans-

actions).
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Mul t i ca s t Des i gn Mode l

The CDS CD-1.1 expands on the traditional unicast design to provide a highly reli-

able multicast service that provides the same auditability as traditional unicast.

Current multicast technologies based on UDP are inherently less reliable than uni-

cast technologies based on TCP/IP. However, the promise of significant network

bandwidth savings makes multicasting attractive. The design allows a data pro-

vider to support more data consumers directly for most of their data needs without

dependence on an intermediate forwarding facility, such as the IDC. The CDS CD-

1.1 multicast design addresses the limitations of multicast technology while main-

taining the advantages of providing a multicast service with reliability equivalent to

that of the CDS CD-1.1 traditional unicast design.

Cus tom Mul t i ca s t So lu t ion

A custom implementation was chosen rather than a COTS solution for CD-1.1

multicasting. State-of-the-art reliable multicasting COTS systems only provide bet-

ter best-effort data delivery. Full reliability is achieved with such systems by adding

higher level application-specific error handling. Further, these technologies are still

emerging and industry-wide standards for protocols and interfaces have not yet

been established. As a custom application was needed in any case, it was simpler

to design a full custom system rather than relying on immature technologies that

do not provide a full solution [SAIC-01/3068].

Data P rov ide r P rov ides Re l i ab le
Mu l t i ca s t ing

A primary motivation for using multicast technology is to allow a data provider at a

station to directly service the needs of most data consumers without dependence

on an intermediate forwarding facility, such as the IDC. The design of the multi-

casting subsystem provides this by allowing all data consumers to send requests for

retransmission of missing data packets directly to the data provider. Requests are

sent in the form of Packet Negative Acknowledgements (PNacks) via unicast UDP

as shown in Figure 7. The data provider collects PNacks, removes duplicate

requests and remulticasts requested data packets to the entire multicast group.
21

s y s t e m C D - 1 . 1

a r y 2 0 0 3

22

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 7. RELIABLE MULTICAST SUBSYSTEM

Un icas t Ca t chup

Multicasting is inherently a best-effort transport technology. Reliable multicasting,

i.e. multicasting with retransmission requests, only provides a “better” best-effort

solution. Reliable multicasting cannot service retransmission requests for more than

a short period before it must give up and continue to provide multicasting of near

real-time data. To achieve full CD-1.1-level reliability, a unicast catchup mechanism

is used to deliver data that fails to be delivered via multicasting. The unicast

catchup mechanism allows a data consumer to make a one-to-one TCP/IP connec-

tion with a data provider to request missing data. This also provides a catchup

mechanism after outages of either the data provider or data consumer.

PNack

Data Consumer 1

CD-1.1
Multicast

data
packets

UDP

Data Consumer 2

CD-1.1
Multicast

Data Consumer N

CD-1.1
Multicast

Data Provider

CD-1.1
Multicast

UDP

PNack

PNack
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Separa te Mu l t i ca s t and Un i cas t
Ca t chup Subsys tems

Separate subsystems are used for the multicasting and unicast catchup data deliv-

ery as shown in Figure 8. Separate subsystems provide several benefits. Indepen-

dent subsystems follow the design model established in the traditional unicast

design of multiple independent components that contribute to the robustness of

the system. Each component is relatively simple and concentrates on a single part

of the job. Components can be distributed over multiple hosts. An unexpected ter-

mination and restart of a single component can occur without disruption of other

components.

FIGURE 8. SEPARATE MULTICAST AND UNICAST CATCHUP SUBSYSTEMS

Full CD-1.1 reliability can only be achieved with CD-1.1 frame-level error han-

dling. This capability is already provided by the unicast components, a robust and

proven design. With only minor modifications, the existing traditional unicast com-

TCP/IP

UDP

Frame Store

CD-1.1
Multicast

CD-1.1
Unicast Catchup

Frame Store

CD-1.1
Multicast

CD-1.1
Unicast Catchup

Data Provider Data Consumer
23

s y s t e m C D - 1 . 1

a r y 2 0 0 3

24

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
ponents allow a data consumer to request a unicast catchup connection and

request any missing data still stored in the Frame Store of the data provider. Reuse

of proven components reduces implementation risk and cost.

Re l i ab i l i t y Hos t s fo r Un i cas t
Ca t chup Subsys tem

A data provider at a station may support multiple unicast catchup connections

from data consumers. However, bandwidth of the WAN connection, processing

power and storage capacity of the data provider provide practical constraints on

the number of data consumers that can be allowed to connect directly to a station

data provider. Separate reliability hosts, with higher network bandwidth, process-

ing power, and storage capacity, can support many more unicast catchup connec-

tions to data consumers than can be supported directly by a station data provider.

Figure 9 shows the concept of operation for the unicast catchup subsystem using

reliability hosts.

Any host that services unicast catchup connections is a reliability host. The station

data provider is a reliability host for one or more data consumers and secondary

reliability hosts. The IDC and other facilities with sufficient network bandwidth and

resources to support unicast catchup connections operate as secondary reliability

hosts. The secondary reliability hosts request unicast catchup connections from the

station data provider to retrieve frames not received from the multicast transmis-

sion. Other data consumers request unicast connections from the secondary reli-

ability hosts and request frames from the local Frame Store. The unicast catchup

connections between the secondary reliability hosts and station data providers and

the unicast catchup connections between other data consumers and the secondary

reliability hosts are completely independent from each other.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
FIGURE 9. RELIABILITY HOSTS FOR UNICAST CATCHUP SUBSYSTEM

Data Consumers N+

CD-1.1
Unicast Catchup

Frame Store

Station Data Provider

CD-1.1
Unicast Catchup

Frame Store

Data Consumers M+

CD-1.1
Unicast Catchup

Frame Store

Data Consumers 1-N

CD-1.1
Unicast Catchup

Frame Store

Reliability Host

acknack
frames

data
frames

Reliability Host 1

CD-1.1
Unicast Catchup

CD-1.1
Unicast Catchup

Frame Store

Reliability Host 2

CD-1.1
Unicast Catchup

CD-1.1
Unicast Catchup

Frame Store

data
frames

acknack
frames

acknack
frames

data
frames

acknack
frames

data
frames

data
frames

acknack
frames
25

s y s t e m C D - 1 . 1

a r y 2 0 0 3

26

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Mul t i ca s t Connec t ion In i t i a t ion

Unlike TCP/IP, UDP is a connectionless protocol. The multicast data provider trans-

mits data without any direct connection to a data consumer. The data provider

simply sends data to the multicast group’s IP address. If a data consumer joins the

multicast group it should receive the data. To join a multicast group, a data con-

sumer requests a “connection” to the data provider in the form of a Connection

Request Frame and in return receives a Connection Response Frame containing the

IP address and port number of the multicast group and IP address and port number

of the PNack receiver (Figure 10). The data consumer joins the multicast group and

starts listening to the data stream. The Connection Response Frame is not provided

to the data consumer until its connection request has been verified.

FIGURE 10. MULTICAST CONNECTION INITIATION

Un icas t Ca t chup Connec t ion
In i t i a t ion

Unicast catchup connection initiation is the same as for traditional unicast connec-

tions except that the data consumer initiates the connection (Figure 11). In normal

operation with good multicast transmission, no unicast catchup connection is

PNack packets

data packets

Connection

CD-1.1
Multicast

CD-1.1
Multicast

Data ConsumerData Provider

IP
address

UDP

UDP

connect response frame

connect request frame TCP/IP

TCP/IPManager
Connection
Originator
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
needed. If a data consumer is missing data for any reason, it requests a unicast

catchup connection by sending a Connection Request Frame to the data provider.

The data provider responds with a Connection Response Frame. The data con-

sumer then sends an Option Request Frame containing the list of missing frame

sequence numbers and the data provider responds with an Option Response

Frame. Once the connection has been established, the data provider begins send-

ing requested frames that are available in the Frame Store. After all the requested

frames have been sent and positively acknowledged, the data provider terminates

the connection.

FIGURE 11. UNICAST CATCHUP CONNECTION INITIATION

Mul t i ca s t S ta r tup T ime

CD-1.1 multicast is intended to provide near real-time data to data consumers. It is

not intended to back fill long periods of missing data after an outage. At startup, a

data provider begins sending near real-time data minus a small lookback period. A

data consumer may join a multicast group at any time and start receiving current

data but may not request that the data provider remulticast catchup data. That

functionality is provided by the unicast catchup subsystem.

acknack frames

data frames

connect response frame
Connection

Data ConsumerData Provider

TCP/IP

TCP/IP

TCP/IP

TCP/IP

TCP/IP

TCP/IP

option request frame
(missing frame sequence
numbers)

Manager
Connection
Originator

option response frame

Unicast
Catchup
CD-1.1

Unicast
Catchup

connect request frame

CD-1.1
27

s y s t e m C D - 1 . 1

a r y 2 0 0 3

28

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The small lookback period at startup allows the multicast subsystem to recover

from a short outage, such as a restart of the data provider, without causing a data

consumer to use a unicast catchup connection to fill in missing data.

Database Schema Overv iew

CDS CD-1.1 software uses the ORACLE database for the following purposes:

■ to verify connection requesters

■ to determine the CDS CD-1.1 host for servicing a data provider

■ to determine the site sensor parameters for parsing data

■ to determine the location and form of disk loop files for storing parsed

waveform data

■ to store descriptions of time-series data written to disk loop files

Table 1 shows the database tables used by the CDS CD-1.1. The name field identi-

fies the database table. The mode field is “R” if CDS CD-1.1 reads from the table

and “W” if it writes to the table.

TABLE 1: DATABASE TABLES USED BY CDS CD-1.1

Name Mode Description

affiliation R specifies the affiliation between sites and reporting stations, that
is, which sites are reported by which stations

alphasite R specifies data providers whose connections are accepted, and
identifies the dlman to handle the connection

dlman R (Disk Loop Manager) identifies computers capable of hosting a
CDS CD-1.1 connection

sensor R provides descriptive information about sensors in the IMS (the
sensor instruments at the sites)

site R provides descriptive information about a given reporting site
(data provider)

sitechan R provides descriptive information about the data channels at a
given site (data provider)
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
FUNCT IONAL DESCR IPT ION

The CDS CD-1.1 is composed of the following high-level components:

■ Connection Manager manages data connection requests

■ Data Center Manager manages process execution at a data center

■ Connection Originator requests data connections

■ Exchange Controller provides policy logic for Frame Exchange

■ Frame Exchange handles transmission of protocol frames

■ Multicast Sender deconstructs protocol frames into data packets

and sends to data consumers via multicast

■ Multicast Receiver receives multicast data packets and reconstructs

protocol frames

■ Data Parser parses protocol Data Frames into a format
usable by data processing components

■ Frame Store Stager manages staging of Frame Store files for
archiving

■ Authentication provides DSA authentication capabilities

wfconv R provides information used to convert data from a specific site
from its native format into CSS 3.0 format (waveform files)

wfdisc W provides waveform description records for data parsed into the
waveform files

wfproto R provides prototype information used for the production of wfdisc
records

TABLE 1: DATABASE TABLES USED BY CDS CD-1.1 (CONTINUED)

Name Mode Description
29

s y s t e m C D - 1 . 1

a r y 2 0 0 3

30

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Trad i t iona l Un i cas t Func t iona l
Desc r ip t ion

Figure 12 presents the data flows of CDS CD-1.1 software traditional unicast mode

at the IDC and shows three important functions: receiving data, forwarding data,

and providing data for processing. Receipt of data from an IMS station is pictured

on the left side of Figure 12; forwarding data to an NDC (or other recipient) is pic-

tured on the right side of the figure, and parsing data is pictured at the bottom of

the figure.

Flow of inbound protocol frames begins when a connection request from an IMS

station Connection Originator is accepted by the IDC Connection Manager (process

1). After authenticating the request (process 2), control is passed to the Exchange

Controller (process 3), which controls the exchange of frames through the IDC

Frame Exchange (process 4). The IDC Frame Exchange is connected to both the

Exchange Controller (process 3) and the IMS Frame Exchange at the data source.

This interface with the IMS Frame Exchange is used to provide acknowledgements

and commands to the IMS station. Received frames are stored in a Frame Store

(D1), whose contents are indexed in a frame log imbedded within the Frame Store.

To forward data to an NDC, a Connection Originator at the IDC (process 6)

exchanges protocol frames with the NDC Connection Manager to set up an inter-

face between a Frame Exchange at the IDC (process 8) and a Frame Exchange at the

NDC. The IDC Frame Exchange sends data to the NDC via this interface. Control is

passed to an IDC Exchange Controller (process 7) to manage this connection.

Data Frames are parsed by Data Parser (process 5), and the result is written to disk

loops in CSS 3.0 format for use by other IDC software.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
FIGURE 12. FUNCTIONAL DESIGN OF CDS CD-1.1 TRADITIONAL UNICAST
OPERATION

IMS
Connection
Originator

Exchange
Controller

(IMS)

IMS
Frame

Exchange

NDC
Frame

Exchange

Data Parser

Exchange
Controller

(NDC)

NDC
Connection

Manager

in out

inout

control,
frame messages

control,
frame messages

connection
Db information

controller I/O
D2 log (IMS)

controller I/O
D3 log (NDC)

Frame Store,
D1 frame log

verification
D4 status

Exchange
Frame

(NDC)

8

operational
Db database

CSS 3.0
D5 waveform files

Frame
Exchange

(IMS)

3

4

5

7

Authentication

2

Authentication

2

Connection
Originator

6

(NDC)
(Unicast)

Connection
Manager

1

(IMS)
(Unicast)
31

s y s t e m C D - 1 . 1

a r y 2 0 0 3

32

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Mul t i ca s t Func t iona l Desc r ip t ion

Figure 13 shows the functional design of CD-1.1 software multicast mode at the

IDC. The four functions depicted are receiving multicast data, requesting and

receiving missing data via unicast catchup connections, servicing requests for data

to other data consumers via unicast catchup connections, and providing data for

processing. Receipt of data from an IMS station is pictured on the left side of the

figure, transmission of data to an NDC (or other data consumer) is pictured at the

upper right, and parsing of data is pictured at the lower right of the figure.

Reception of inbound multicast frames begins when an IDC Connection Originator

(process 1) sends a multicast connection request to the IMS Connection Manager

which sends a connection response. Once the connection response is received,

control is passed to Multicast Receiver (process 2), which listens to the multicast

stream of data packets, reconstructs protocol frames and writes them to the Frame

Store. Multicast Receiver detects missing packets and sends PNack packets back to

the IMS station. If the packets are still available in internal memory, Multicast

Sender at the IMS station resends the packets via the multicast stream.

A unicast catchup connection to the IMS station is initiated when missing frames

are detected in the local Frame Store. The Connection Originator (process 5) sends

requests a connection from the Connection Manager at the IMS station. When the

connection is accepted, Connection Originator passes control to Exchange Control-

ler (process 4) that interacts with Frame Exchange (process 3) to receive missing

frames from the Frame Exchange at the IMS station.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
FIGURE 13. FUNCTIONAL DESIGN OF CDS CD-1.1 MULTICAST OPERATION

IMS
Connection

Manager

Exchange
Controller

(IMS)

IMS
Frame

Exchange

in

out

control,
frame messages

controller I/O
D2 log (IMS)

Frame Store,
D1 frame log

Frame
Exchange

(IMS)

4

3

Multicast
Receiver

2
IMS

Multicast
Sender

packets

pnacks

NDC
Frame

Exchange

Exchange
Controller

(NDC)

NDC
Connection
Originator

out

in

control,
frame messages

Exchange
Frame

(NDC)

8

7

controller I/O
D3 log (NDC)

Data Parser

9

operational
Db database

CSS 3.0
D5 waveform files

IMS
Connection

Manager

Connection
Originator

5

Authentication

10

Authentication

10

verification
D4 status

(IMS)
(Catchup)

Connection
Originator

1

(IMS)
(Multicast)

Connection
Manager

6

(NDC)
(Catchup)

(IMS)
33

s y s t e m C D - 1 . 1

a r y 2 0 0 3

34

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Similarly, other data consumers may request unicast catchup connections from the

IDC to request missing protocol frames. The connection is initiated by a Connection

Originator at the remote data consumer. Connection Manager (process 6) responds

to a connection request and initiates an Exchange Controller (process 7) and Frame

Exchange (process 8) pair to service the connection. After the requested data is sent

and acknowledged, Frame Exchange terminates the connection and exits. The uni-

cast catchup operation only responds to requests for missing data; it does not for-

ward all data as in traditional unicast operation.

Data Frames are parsed by Data Parser (process 9), and results are written to disk

loops in CSS 3.0 format for use by other IDC software.

SOFTWARE COMPONENTS

The following sections describe CDS CD-1.1 software components. Components in

this context may or may not map directly to a computer process. Components are

entities that provide a significant processing capability to the overall CDS CD-1.1.

Connec t ion Manager

Connection Manager, in concert with Connection Originator, establishes connections

between a data provider and a data consumer. Connection Manager maintains the

addressing information and connection policy of CDS CD-1.1 as defined in

[IDC3.4.3Rev0.2] for the three connection types, traditional unicast, multicast, and

unicast catchup.

Traditional unicast connections are requested by Connection Originator at a data

provider. Connection Manager exchanges connection information with Connection

Originator and establishes a TCP/IP connection. After the connection is estab-

lished, Frame Exchanges communicate over the private link without any further

assistance from Connection Manager.

For multicast connections, Multicast Sender at the station is continuously sending

data to the multicast group regardless of whether a data consumer is listening.

Connection Manager at a station data provider responds to a connection request
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
from Connection Originator at a data consumer by sending connection information

for the multicast group and PNack UDP connections. Connection Manager at the

station then exits. There is no direct interface between Connection Manager at a

station data provider and Multicast Sender.

Unicast catchup connections are established much the same way as traditional uni-

cast connections however the connections are requested by Connection Originator

at a data consumer rather a data provider. Connection Manager on the data pro-

vider or reliability host exchanges connection information and establishes a TCP/IP

connection to be used by the Frame Exchanges.

For traditional unicast and unicast catchup connections, Connection Manager inter-

faces with Exchange Controller through process inheritance. After establishing a

TCP/IP connection, Connection Manager execs Exchange Controller. Exchange Con-

troller inherits the connection information (sockets and identity of the other end)

from Connection Manager.

Connection Manager at a data center uses the database to validate connection

requests by looking up acceptable connection sites and their addresses. Connection

Manager interfaces with UNIX via inetd(1) and takes advantage of UNIX services

for port monitoring and invocation.

Data Cente r Manage r

Data Center Manager provides process control for several CDS CD-1.1 processes

that are executed at a data center. This process control is provided for those pro-

cesses that require monitoring and stimulation/instantiation from within the data

center, in contrast to processes that are instantiated by stimulation from outside of

the data center. An example of an externally stimulated process is the process that

services inbound data from an IMS station. An example of an internally instanti-

ated process is Data Parser.
35

s y s t e m C D - 1 . 1

a r y 2 0 0 3

36

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Data Center Manager instantiates child processes at a data center. The child pro-

cesses are monitored by Data Center Manager to detect exit conditions and config-

ured output. When a child process exits, the manager has the capability to react to

the condition via rules defined explicitly for the child. Reaction can include restart-

ing the same process, starting a different process, or doing nothing.

Data Center Manager provides execution startup commands in the form of a UNIX

command line with optional command-line arguments. Data Center Manager also

interfaces with managed processes via UNIX stdout and stderr data streams.

These streams are monitored by Data Center Manager to log process status. If a

child process provides configured output to Data Center Manager, the Data Center

Manager has the ability to treat the output as a command, write the output to a log

file, or ignore the output.

An interface to the operating system exists to issue signals to managed processes.

The interface to the operating system is also used for obtaining the process IDs of

managed processes and for time.

Connec t ion Or i g ina to r

Connection Originator initiates a CD-1.1 connection. Connection Originator is

responsible for establishing a TCP/IP connection and providing CD-1.1 protocol

transactions that result in an agreement to maintain a connection. Connection

Originator’s frame traffic is limited to that required for establishing a communica-

tions path. After a communication path is established, Connection Originator

spawns a child process to continue protocol exchanges. Exchange Controller is used

for traditional unicast and unicast catchup connections and inherits the TCP con-

nection established by Connection Originator. Multicast Receiver is used for UDP

multicast connections. It makes no use of the TCP connection.

A command-line interface is used to provide run time configuration information to

Connection Originator. Connection Originator interfaces with the UNIX operating

system via system calls to attach to socket file descriptors and to obtain informa-

tion about connected computers. Connection Originator is dependent on the cor-
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
rect configuration of the operating system with respect to IP addresses and

computer names and provides no capability to manipulate host computer network

information.

Connection Originator interfaces with a protocol peer computer to obtain the

remote socket assignment (connection request and response) and to exchange

connection information. A Connection Manager process on the protocol peer mon-

itors and manages port assignments, and provides assignments to Connection

Originator.

Connection Originator interfaces with Exchange Controller and Multicast Receiver

through process inheritance. The interface to the child process is unidirectional and

involves a single transaction. Connection Originator is responsible for providing the

needed startup information to the child. After it is exec ’d, Connection Originator

becomes the child process.

Connection Originator has an interface to a logging capability. This interface is used

to log connections and attempted connections.

Exchange Cont ro l l e r

Exchange Controller implements the policy of how to act upon protocol frames.

Exchange Controller performs simple distribution and prioritization based on the

frame source and the frame type for both inbound and outbound frames. Exchange

Controller encapsulates the ordering policy for outbound frames and provides noti-

fications for inbound/received frames.

Exchange Controller’s interface with Frame Exchange is through a UNIX pipe.

Exchange Controller sends frame messages on the outbound pipe and receives

frame messages on the inbound pipe.

Exchange Controller may interface with other components of the system indirectly

through a Frame Store. Exchange Controller monitors a Frame Store for newly

received frames and acts on frames discovered. For example, in a data forwarding
37

s y s t e m C D - 1 . 1

a r y 2 0 0 3

38

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
configuration, newly received Data Frames are discovered by a forwarding

instance of Exchange Controller and communicated to Frame Exchange for the pur-

pose of forwarding.

Frame Exchange

The primary function of Frame Exchange is to reliably transport frames from one

Frame Store to another. Each Frame Exchange has a single associated Exchange

Controller, which directs the operation of Frame Exchange using frame messages

sent over a pipe. Each Frame Exchange is connected by a TCP/IP socket to a corre-

sponding Frame Exchange at another site to which it sends and from which it

receives frames.

Frame Exchange has two interfaces: a private pipe to its associated Exchange Con-

troller and a socket connection to a Frame Exchange on another node. Communica-

tion with Exchange Controller is done by frame messages. Frame messages handle

the full interface functionality required between Frame Exchange and its Exchange

Controller.

The socket interface is used only to send and receive frames. The syntax of frames

is described fully in [IDC3.4.3Rev0.2]. Except for AckNack messages, which are

handled directly by Frame Exchange, all frames are stored in an appropriate frame

set within a Frame Store, and notification is sent to Exchange Controller.

Frame Exchange interfaces with the Frame Store to store received frames and to

send retrieved frames.

Mul t i ca s t Sender

Multicast Sender reads CD-1.1 protocol frames from a Frame Store, breaks them

down into UDP packets and sends them via IP multicast. An internal buffer is

maintained containing transmitted packets. PNack packets identifying missing

packets are received from data consumers via a separate UDP port. If requested

packets are still in the internal buffer, Multicast Sender remulticasts them to all data
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
consumers. Multicast Sender waits a configurable hold off period before accepting

subsequent PNacks for the same packets to allow for network round trip transmis-

sion time.

The size of the internal packet buffer is configurable. However, it is significantly

smaller than a Frame Store, on the order of ten minutes compared to a Frame

Store, which is typically seven days. The packet buffer is stored in volatile memory

and is lost in a processor restart. At startup, Multicast Sender reads data from the

Frame Store beginning with frames created at the current time minus a small con-

figurable lookback period.

When the internal buffer is full, oldest data is overwritten by newest data. Once

data are overwritten, they can no longer by transmitted via multicast so Multicast

Sender cannot respond to PNack requests for that data. Once started, Multicast

Sender continues to send data packets to the multicast group whether or not any

data consumers are listening.

The upper rate of multicast transmission is configurable. UDP has no native rate

control and, if unconstrained, could overwhelm the network. The transmission rate

must be set low enough to prevent congestion yet sufficiently high to keep up with

current data plus a tolerable amount of retransmissions due to PNack requests.

Mul t i ca s t Rece i ve r

Multicast Receiver is responsible for receiving UDP data packets, reconstructing

CD-1.1 protocol frames and writing them to a Frame Store. Data packets are

received through a socket connection to the IP multicast group and stored in an

internal buffer. Missing packets are requested by sending a PNack packet to the

data provider via a unicast UDP connection. The data provider responds by remul-

ticasting missing packets to the entire group.

After all data packets for a protocol frame are received, they are reconstructed into

a frame and written to a Frame Store. If all packets for a frame are not received

before the internal circular buffer rolls over, the frame is abandoned and can no

longer be received through multicast. The size of the internal buffer is configurable

but should match the size of the buffer on the data provider.
39

s y s t e m C D - 1 . 1

a r y 2 0 0 3

40

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Multicast Receiver is initiated by Connection Originator after a multicast connection

is established. Connection Originator provides Multicast Receiver to the IP multicast

group and UDP PNack receiver.

Data Pa r se r

Data Parser converts CD-1.1 protocol time-series data to the CSS 3.0 format read-

able by automatic and interactive processing software.

Data Parser polls frame sets at a data center for newly arrived Data Frames. New

frames are parsed to extract station and channel names, duration, data time, and

compression format. Time-series data are converted to CSS 3.0 format and written

to disk files in a disk loop. A disk loop is a collection of files logically ordered in a

time-series loop. Data Parser places time-series data in their proper position in disk

loop files regardless of the time order in which the data arrive and are processed.

After data are written to the file system their location is referenced in the wfdisc

table of the DBMS. The data become visible to other IDC applications through the

DBMS references.

Data Parser is a stand-alone capability and uses a command-line interface to pro-

vide run-time configuration information.

The DBMS interface is used primarily to record information about the time-series

data placed in disk loops, that is, station, channel, time, and disk-loop location

information (waveform description–wfdisc data). Time-series descriptive data in the

database are used by signal processing and analysis for accessing received data.

Secondarily, the DBMS interface provides and stores processing state information.

This information is particularly useful at startup time, for example, the status of

polling of a frame set.

Data Parser interfaces with a Frame Store to retrieve inbound CD-1.1 frames.

Within Frame Store Data Parser accesses one frame set for each station providing

CD-1.1 protocol data. Consequentially, a given Data Parser may poll and process

data from a number of frame sets. Multiple frame set activities are also reflected in

the interface to the DBMS in that state, because each set must be recorded.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Data Parser uses an interface to the UNIX file management system to manage disk

loop files and to store data. The number and size of the files are configurable for

optimum performance, utility, and supportability.

Frame S to re S tage r

Frame Store Stager is the interface between the CDS CD-1.1 and the Archiving Sub-

system. Frame Store Stager is flexible enough to support several existing archiving

systems. Frame Store Stager only needs to run periodically; cron(1) is a suitable

mechanism for an operational implementation.

Frame Store Stager moves the oldest Frame Store files out of the active Frame Store

and into a staging area. After they are moved, processes interacting with the active

Frame Store are no longer able to access the files. The staging area is a logical con-

struct, which means the files are disassociated from the active Frame Store. The

files might not move (a configuration option), but the active Index no longer refer-

ences the files.

Frame Store Stager identifies the archive-ready files to the Archive Subsystem by

way of database table entries. The Archive Subsystem periodically examines the

database and handles (copy/confirm/delete) the files that are waiting to be

archived. The Archive Subsystem has the responsibility of deleting files from disk

after their transfer to the archive medium is confirmed.

The primary purpose for archiving the Frame Store is to allow re-authentication of

data. The original frame must be saved intact to meet this requirement. Frame

Store Stager could serve as an archive of waveform data; however, this method

requires a data parsing step to extract the data.

Authent i ca t ion

Authentication provides the ability to apply and authenticate DSA signatures in

CD-1.1 frames. Each frame as well as each Channel Subframe in the CD-1.1 proto-

col contains authentication data fields.
41

s y s t e m C D - 1 . 1

a r y 2 0 0 3

42

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
When a frame is created the creator optionally sets and fills authentication data

fields for carrying the digital signature of the creator. Authentication supports the

specification of a key identifier used in generating the signature. Given the key ID

and the frame to be signed, the processing fills the frame signature field and sets

authentication data values to represent the presence and size of the authentication

data. Applying an authentication signature does not result in the encryption of the

frame’s content.

Signature authentication is also provided to verify the authenticity of CD-1.1

frames. This processing capability validates the digital signatures, where these sig-

natures are evaluated within the context of the accompanying frame or subframe.

Authentication capability is provided as an application program interface to a soft-

ware library. Through this interface any CDS CD-1.1 component may invoke signa-

ture authentication services. Requesters provide a frame or Channel Subframe to

be signed or authenticated and receive the results of that request.

The signature authentication capability has a read-only interface with a Frame

Store to obtain frames that are evaluated for signature validity.

The results of frame and Channel Subframe authentication processing are recorded

using an interface to the frame logs. The use of this interface is activated via initial-

ization configuration, such that the requester may assume responsibility for record-

ing authentication results.

INTERFACE DES IGN

This section describes CDS CD-1.1 interfaces with other IDC systems, external

users, and operators.

I n te r f ace w i th Othe r IDC Sys tems

CDS CD-1.1 has no direct interface with the other processes in the IDC system.

However, CDS CD-1.1 does indirectly interface with all other system elements that

process signal data. CDS CD-1.1 receives time-series data and parses them into disk
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
loop waveform files, which are described by database waveform description

(wfdisc) records. The interface to other system elements is through these database

records and disk-loop files.

I n te r f ace w i th Ex te rna l Use r s

CDS CD-1.1 interfaces with external users to receive data from data providers and

to forward data to data consumers. These interfaces are conducted through UNIX

sockets. The IP stack is used over these sockets, employing TCP/IP (or UDP for

multicast) for the low-level transportation mechanism. The CD-1.1 protocol is at

the application layer of the protocol, as documented in [IDC3.4.3Rev0.2].

I n te r f ace w i th Opera to r s

The operational processing of the CDS CD-1.1 is designed to be automated. In

other words, no operator action is needed to respond to data connection requests,

to invoke data parsing, or to forward data after the software suite is configured

and started. With this design approach the following interfaces result:

■ A command-line interface is used to start Data Center Manager process-

ing on each host selected for either parsing or forwarding data. This

interface permits specification of a run-time configuration file and a pro-

cess name.

■ Each process of the CDS CD-1.1 writes significant processing events to a

log. These log files are ASCII text and are viewable by any operator.

These files are generally sparse and contain information that may be of

greater interest to a software engineer than a system operator. However,

error conditions are recorded in these files, and when possible all termi-

nating failures are logged.
43

s y s t e m C D - 1 . 1

a r y 2 0 0 3

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 3: De ta i l ed Des i gn

This chapter describes the detailed design of the CDS CD-1.1 and includes the fol-

lowing topics:

■ Data Flow Model

■ Processing Units

■ Multicast Protocol

■ Database Description
s y s t e m C D - 1 . 1

a r y 2 0 0 3 45

S o f t w a r e
I D C D O C U M E N T A T I O N

46
Chapter 3: De ta i l ed Des i gn

DATA FLOW MODEL

The CDS CD-1.1 is a suite of software components that provides reliable delivery

and parsing of CD-1.1 protocol frames. The software is designed to continue exe-

cution indefinitely without operator intervention after it is configured and operat-

ing. Data are handled in a near-real-time manner by CDS CD-1.1 components to

provide a flow of time-series data to forwarding destinations and signal processing

and analysis components of the Monitoring System. The CDS CD-1.1 software has

two operational modes, traditional unicast and multicast.

Trad i t iona l Un i cas t Opera t ion

Figure 14 shows the CDS CD-1.1 data flow for traditional unicast operation at the

IDC. Connection Manager and Connection Manager Server establish inbound con-

nections to the CDS CD-1.1 at the IDC with a cooperating system participating in

the CD-1.1 protocol. Inbound processing activity of the CDS CD-1.1 is initiated by

a data provider delivering a Connection Request Frame to a “well known host”

and port number. This “tickle” of an IP port is handled by the Internet daemon

process inetd of the UNIX operating system. The Internet daemon responds to the

port connection request by starting a Connection Manager process and passing the

connection request packet received to that process. After validating the request,

Connection Manager selects a host to service the connection being requested and

sends a message to the host requesting the service of Connection Manager Server.

The communication to and initiation of Connection Manager Server is accomplished

in the same manner as that used for Connection Manager itself; that is, the Internet

daemon of the operating system is used to start a process when the known address

is tickled. Assuming that a connection is accepted, Connection Manager Server

responds to Connection Manager with the port number to use. The port number is
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
provided to the data provider in the form of a CD-1.1 Connection Response

Frame. After the response frame is sent, Connection Manager has fulfilled its objec-

tive and exits. It is reactivated by inetd when the next Connection Response Frame

is received. The activated Connection Manager Server waits to be contacted on the

port with an Option Request Frame from the data provider. When this frame is

received the Connection Manager Server responds with an Option Response Frame

and exec ’s an Exchange Controller to further service the connection.

FIGURE 14. DATA FLOW MODEL OF CDS CD-1.1 TRADITIONAL UNICAST
OPERATION

D5

D3

IMS
Connection
Originator

Connection
Manager

IMS
Frame

Exchange

Data Parser

Data
Center

Manager

Connection
Originator

NDC
Connection

Manager

Connection
Manager

Server

Exchange
Controller

Frame
Exchange

Exchange
Controller

Frame
Exchange

NDC
Frame

Exchange

disk loopsD4

DBMSDb

Frame Store:
D1 frame log

D5

connection
Db status/control

controller I/O
D2 log

authentication
certificates

authentication
certificates

authentication
logs

1

2
5

3

7

8

9

4

6

47

s y s t e m C D - 1 . 1

a r y 2 0 0 3

48

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The method used to start Exchange Controller is such that Exchange Controller

assumes/takes-over the process ID of Connection Manager Server. The result is that

Connection Manager Server ceases to exist (essentially the same as an exit) and

Exchange Controller executes in its place. Exchange Controller works in concert with

Frame Exchange to service a connection to a protocol peer participating in the CD-

1.1 protocol. Exchange Controller’s parent provides a communication port at

startup. Exchange Controller passes the port to the Frame Exchange process that it

exec s. The forked Frame Exchange opens the communication port and attempts to

communicate with the protocol peer. When Frame Exchange receives the frames, it

stores the frames in the Frame Store, notifies Exchange Controller about the newly

received frames, and updates its accounting for the next AckNack Frame. AckNack

Frames are periodically sent to the data provider by Frame Exchange to declare its

presence and state. In this way the AckNack not only serves as a “heartbeat”

indicator, but also acknowledges the frames that have been successfully received.

Frame Exchange and Exchange Controller remain active until a terminating

command or condition is encountered. In the event of such a condition, an

attempt is made to tell the participating node of the exit condition via an Alert

Frame prior to exiting.

Data Center Manager manages the processes responsible for IDC outbound CDS

CD-1.1 connections and processing local to the IDC. There is a Data Center Man-

ager for each host providing such services to the CDS CD-1.1. Data Center Manager

is initiated by user input and takes a file that provides configuration information as

a command-line argument. After it is activated Data Center Manager runs indefi-

nitely or until a terminating condition is encountered, such as the receipt of a kill

signal. Data Center Manager exec s the processes it is to manage (as specified in its

configuration file), monitors their progress via connections to the output data

streams, and identifies process IDs (PIDs). If a monitored process terminates, Data

Center Manager has the ability to restart the program (or a different program)

according to configuration values.

Data Parser is one of the processes started and managed by Data Center Manager.

Data Parser is responsible for decomposing CD-1.1 Data Frames to extract time-

series signal data. Data Parser retrieves newly received frames written by Frame

Exchange from the Frame Store. Channel Subframes are extracted from frames and
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
verified for authenticity if digital signatures are present. Data contained in the

Channel Subframes are converted to the CSS 3.0 data format. Converted data are

written to disk loop files, and a DBMS waveform description (wfdisc) record is cre-

ated and stored for the converted data. After they are created, the wfdisc record(s)

and the disk loop files are used by signal processing and analysis software of the

monitoring system. Data Parser is designed to execute indefinitely and periodically

polls the Frame Store for new frames. More than one Data Parser may be executing

in the CDS. However, a given data provider must be configured to be processed by

only one Data Parser.

Data Center Manager initiates and monitors processing to keep data flowing to the

configured forwarding destinations. A Connection Originator process is started by

Data Center Manager for each forwarding destination. Connection Originator

exchanges the Connection Request and the Option Request Frames with a for-

warding destination to establish a connection port between the computer systems.

The interaction required to establish this connection is the mirror image of the

interaction for the inbound connection to the IDC by Connection Manager and

Connection Manager Server. When a connection is granted Connection Originator

exec ’s an Exchange Controller process and provides the received communication

port. When Exchange Controller is successfully exec ’d, Connection Originator

ceases to exist allowing the child process to assume the process ID and file descrip-

tors of the parent. This processing flow follows the model used by Connection

Manager Server to establish an inbound connection to the IDC. Because the child

process inherits the Connection Originator process ID, Exchange Controller (and its

associated connection) becomes the process monitored by Data Center Manager.

Mul t i ca s t Opera t ion

Figure 15 shows the CDS CD-1.1 data flow for multicast operation at the IDC. The

multicast subsystem is shown on the upper part of the figure, and the unicast

catchup subsystem is shown on the lower part. The multicast subsystem consists of

Connection Originator and Multicast Receiver. There is no multicast sender at the
49

s y s t e m C D - 1 . 1

a r y 2 0 0 3

50

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
IDC because the IDC is not a source of multicast traffic. The unicast catchup sub-

system consists of Missing Frame Detector, Connection Originator, Exchange Con-

troller, Frame Exchange, Connection Manager, and Connection Manager Server.

FIGURE 15. DATA FLOW MODEL OF CDS CD-1.1 MULTICAST OPERATION

NDC
Connection
Originator

Connection
Manager

NDC
Frame

Exchange

Missing
Frame

Detector

Frame
Exchange

IMS
Frame

Exchange

Connection
Manager

Server

Exchange
Controller

Frame
Exchange

Exchange
Controller

Connection
Originator

IMS
Connection

Manager

Frame Store:
D1 frame log

D3

connection
Db status/control

controller I/O
D2 log

authentication
certificates

8

9

3

10

6

5

4

11

IMS
Connection

Manager

Connection
Originator

IMS
Multicast
Sender

1

Multicast
Receiver

2

Data
Center

Manager

7

D4
missing sequence
numbers

D5
missing sequence
numbers
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Both Multicast Receiver and Frame Exchange write to the Frame Store. Data Parser,

which is responsible for decomposing the Frame Store into timeseries data, is not

shown. However, it functions in the same manner as in traditional unicast opera-

tion.

Mul t i ca s t Subsys tem

The multicast subsystem is responsible for requesting a connection to an IMS sta-

tion, joining a multicast group, receiving multicast data packets, reconstructing

protocol frames, writing frames to the Frame Store and requesting, and receiving

missing multicast data packets. If Connection Originator or one of its child pro-

cesses is not running, Data Center Manager starts Connection Originator. Connec-

tion Originator sends a Connection Request Frame to Connection Manager at the

IMS station. If validated, Connection Manager responds with a Connection

Response Frame containing the multicast group and PNack receiver connection

information. Connection Originator exec ’s a Multicast Receiver process and pro-

vides it with the connection information. When Multicast Receiver is successfully

exec ’d, Connection Originator exits, allowing the child process to assume the pro-

cess ID and file descriptors of the parent. Multicast Receiver starts listening for data

packets multicast from Multicast Sender at the IMS station and stores the packets in

an internal circular buffer. When all packets for a protocol frame have been

received, Multicast Receiver reconstructs the frame and writes it to the Frame

Store. If Multicast Receiver detects any missing packets, it sends a PNack packet to

Multicast Sender requesting the missing packets be remulticast. When the circular

buffer fills up, it writes over the oldest packets received. If all the packets for a

frame are not received before the circular buffer over writes the slots, the frame is

abandoned.

Un icas t Ca t chup Subsys tem

The unicast catchup subsystem is responsible for requesting and retrieving protocol

frames missed by the multicast subsystem. It is also responsible for providing miss-

ing frames to other data consumers. The unicast catchup subsystem uses the same

components as those used for traditional unicast operation with two major differ-
51

s y s t e m C D - 1 . 1

a r y 2 0 0 3

52

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
ences. In the unicast catchup operation, connections are initiated by the data con-

sumer rather than the data provider. Second, Frame Exchange and Exchange

Controller operate only until the missing frames are retrieved. After the missing

frames have been received, Frame Exchange and Exchange Controller exit. Missing

frame sequence numbers are detected by Missing Frame Detector.

Data Center Manager periodically starts Missing Frame Detector, if it is not currently

running. Missing Frame Detector reads the Frame Store and looks for missing

frames from the sequence. If missing frames are detected, their sequence numbers

are saved to a temporary store. Data Center Manager monitors the processing result

of Missing Frame Detector and invokes the Connection Originator when missing

frames have been detected. Connection Originator requests a unicast catchup con-

nection from Connection Manager at the IMS station by sending a Connection

Request Frame. If Connection Manager at the IMS station validates the request, it

responds with a Connection Response Frame. Connection Originator then sends an

Option Request Frame containing a list of missing sequence numbers to be sent.

Connection Manager Server at the IMS responds with an Option Response Frame.

When the Option Response Frame is received, Connection Originator execs an

Exchange Controller process, which in turn execs a Frame Exchange process.

Exchange Controller works in concert with Frame Exchange to service the connec-

tion as in traditional unicast operation. As frames are received, Frame Exchange

writes them to the Frame Store and sends acknowledgements to Frame Exchange at

the IMS. After Frame Exchange at the IMS has sent all the missing frames and

received acknowledgements, it sends an Alert Frame causing the protocol peers to

exit.

In the role of a reliability host, the unicast catchup subsystem may service requests

for missing frames from other data consumers. Connection Originator at a NDC

sends a Connection Request Frame to a well known port number. The Internet

daemon process inetd responds to the port connection request by starting a Con-

nection Manager process and passing the connection request packet received to

that process. As in traditional unicast operation, Connection Manager validates the

request and starts a Connection Manager Server process via inetd. Connection Man-

ager Server responds to Connection Manager with the port number to use. Connec-

tion Manager sends a Connection Response Frame to the data consumer
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
containing the port number and then exits. Connection Manager Server waits to be

contacted on the port with an Option Request Frame from the data consumer. The

Option Request Frame contains a list of missing sequence numbers to be sent.

When this frame is received the Connection Manager Server sends an Option

Response Frame to Connection Originator at the NDC, writes the missing sequence

numbers to a file and execs an Exchange Controller process. Exchange Controller

works in concert with Frame Exchange to service the connection. Exchange Control-

ler reads the missing sequence numbers from the file and starts Frame Exchange.

Frame Exchange reads the missing frames from the Frame Store and sends them to

Frame Exchange at the NDC. After Frame Exchange at the NDC has received and

acknowledged all the requested frames, Frame Exchange sends an Alert Frame

causing the protocol peers to exit.

PROCESS ING UNITS

The CDS CD-1.1 consists of the following processing units:

■ Connection Manager

■ Connection Manager Server

■ Data Center Manager

■ Connection Originator

■ Exchange Controller

■ Frame Exchange

■ Multicast Sender

■ Multicast Receiver

■ Missing Frame Detector

■ Data Parser

■ Frame Store Stager

■ Protocol Checker

■ libfs

■ libcdo
53

s y s t e m C D - 1 . 1

a r y 2 0 0 3

54

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The following paragraphs describe the design of these units, including any con-

straints or unusual features in the design.

Connec t ion Manage r

Connection Manager negotiates a network connection with a requesting protocol

peer. Connection Manager reads a Connection Request Frame from the requester,

validates the request, and sends back a Connection Response Frame with connec-

tion information. Figure 16 shows the Connection Manager context.

FIGURE 16. CONNECTION MANAGER CONTEXT

I nput /P rocess ing /Output

The following are inputs to Connection Manager:

parameter filesD1

connection
Db data

Frame StoreD3

log fileD2

Manager
Connection

inetd

Server
Manager

Connection

peer
protocol

requesting

port
request

port
response

Connection Request Frame

Connection Response Frame

authenticationD4 certificates
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
■ Run-time configuration information. This information may be provided

on the command line, but are most conveniently contained in a parame-

ter file. Parameters define operational behavior of Connection Manager

including time-out values, names of log files, and database accounts.

Configuration parameters are accessed with routines of the libpar library.

■ Connection Request Frame. This frame is received via socket communi-

cations from a protocol peer.

■ Recognized protocol peer. This information may be stored in database

tables and, if so, is accessed with libgdi library functions when validating

connection requests. In the absence of a DBMS, data are maintained in

files.

■ Active connection information. This information is identified by checking

time tags in Frame Store entries written by the Exchange Controller. These

entries are accessed with routines of the libfs library.

■ Port response message. This message is received via socket communica-

tions from Connection Manager Server and contains a socket port number

for further data transmission.

Process ing

Processing of Connection Manager is provided in the following components:

■ Connection Manager Processing

■ Frame Processing

■ Database Processing

■ Socket Processing

Figure 17 shows the interaction of these components.
55

s y s t e m C D - 1 . 1

a r y 2 0 0 3

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N

56
F
IG

U
R

E
 1

7
.

C
O

N
N

E
C

T
IO

N
 M

A
N

A
G

E
R

 C
O

M
P

O
N

E
N

T
S

Fr
am

e
St

or
e

D
2

pa
ra

m
et

er
 f

ile
s

D
1

in
et

d

Se
rv

er
 h

os
t

M
an

ag
er

C
on

ne
ct

io
n

M
an

ag
er

C
on

ne
ct

io
n

Pr
oc

es
si

ng

1

Pr
oc

es
si

ng
Fr

am
e

Pr
oc

es
si

ng
D

at
ab

as
e

3

Pr
oc

es
si

ng
So

ck
et

lo
ok

up
re

qu
es

te
r

re
qu

es
t

re
su

lt

pe
er

pr
ot

oc
ol

re
qu

es
tin

g
co

nn
ec

tio
n

re
qu

es
t

re
qu

es
t

fr
am

e
pr

oc
es

si
ng

re
qu

es
t

C
D

-1
.1

fr
am

es

so
ck

et
re

qu
es

t

re
qu

es
t

re
su

lt

co
nn

ec
tio

n
D

b
da

ta

2
4

re
su

lts

lo
g

fil
es

D
3

au
th

en
tic

at
io

n
D

4
ce

rt
ifi

ca
te

s

J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

 C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Connec t ion Manage r P rocess ing

Connection Manager Processing is the component that coordinates activities of the

other Connection Manager components. Connection Manager Processing initializes

the logging capability for status messages and error messages. It also initializes

configuration parameter inputs, signal handling, and authentication attributes.

If inetd is being used, the data are read from standard input. If inetd is not being

used, processing in Socket Processing is used to open and read data from a TCP/IP

socket. Frame Processing is used to determine if the data read is a Connection

Request Frame, verify that the signature of the frame is valid, and unpack the

frame data. If the database is being used, Database Processing is invoked to verify

the requester. Processing then verifies that the requester/provider is not already

connected by looking in the Frame Store.

For traditional unicast and unicast catchup connections, a connection server must

be selected. Connection Manager obtains a list of Connection Manager Server hosts

by using either Database Processing or configuration parameters, and then loops

through each listed host. Socket Processing is used to attempt a socket connection.

If a connection cannot be made, the software tries the next host in the list. If a

connection is made, a port request message is sent to the responding Connection

Manager Server and processing waits for a port response message. If no response is

received within the configured time-out, the software tries the next host in the list.

When a valid port response is received, the port is verified by a connection attempt

using Socket Processing. After the selection of a Connection Manager Server host,

Frame Processing is used to build and send a Connection Response Frame contain-

ing the server’s host address and port number to the requester.

For multicast connections, Connection Manager runs on a station data provider.

Connection information is retrieved from configuration data. Frame Processing is

then used to build and send a Connection Response Frame containing the connec-

tion information to the requester.
57

s y s t e m C D - 1 . 1

a r y 2 0 0 3

58

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Frame P rocess ing

Frame Processing provides a group of service that handle frame I/O, frame verifica-

tion, and frame construction. Frame I/O provides the ability to read and write

frames from/to a socket and log a message if there is an error.

Connection Request Frames are checked by:

■ verifying the frame type

■ checking the authentication signature

■ unpacking the frame

■ checking the station type

■ checking the service type

For traditional unicast and unicast catchup connections, Option Request Frames

are checked by:

■ verifying the frame type

■ checking the authentication signature

■ unpacking the frame

■ checking the body count

■ checking the option type

■ checking the requester’s name

Frame construction capability is provided for Connection Response Frames and

Option Response Frames using functions in libcdo.

Database P rocess ing

Database Processing provides a group of low-level service routines. These routines

handle the required interaction between the Connection Manager and the DBMS

through the libgdi API. The following capabilities are provided:

■ Open and close database connections.

■ Obtain a list of server hosts from the dlman table, and order the list

according to preferred host.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
■ Provide locking capability on a data provider’s entry in the alphasite table;

this ability is used to ensure that multiple connection requests are not

processed for the same requester.

■ Look-up a connection requester’s name and address in the alphasite

table.

Socke t P rocess ing

Socket Processing provides a group of low-level service routines that provide access

to the socket I/O by requesting components. The following capabilities are pro-

vided:

■ Establish inbound connection, that is, listen to a port and accept connec-

tions.

■ Establish outbound connections.

■ Examine the address of a named host.

■ Provide the IP address of a local host.

■ Read and send port request messages.

Output

Outputs of Connection Manager are port messages, CD-1.1 Connection Response

Frames, database updates, and log messages:

■ Port messages are sent via sockets to the Connection Manager Server host

to request a connection port.

■ Connection Response Frames are returned to requesting protocol peers

when a connection is accepted. (When a connection request is denied,

no response is provided to the requester.)

■ Errors and significant processing events are written to Connection Man-

ager’s log file to record processing activity.
59

s y s t e m C D - 1 . 1

a r y 2 0 0 3

60

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Cont ro l

Connection Manager is started by inetd when a Connection Request Frame is

received at the well-known host on the well-known port and terminates after

responding to the request. In the case of a successful connection a Connection

Response Frame is provided to the requester. In the case of an unsuccessful con-

nection no response is provided.

I n te r f aces

■ Connection Manager interfaces with connection requesters using Con-

nection Request Frames across a TCP/IP socket connection.

■ Connection Manager interfaces with Connection Manager Server using a

TCP/IP socket connection. Port request and port response messages are

exchanged over this interface to coordinate connection host and port

number.

■ Connection Manager interfaces with the DBMS using libgdi library func-

tions.

■ Connection Manager interfaces with the host file system using liblog

functions to log error conditions and significant processing events.

Er ro r S ta tes

Execution of Connection Manager concludes with either a successful or unsuccess-

ful connection request. An unsuccessful attempt is attributed to the following pos-

sibilities:

■ failed execution

■ successful execution that resulted in a denied request

Failed execution is most generally attached to configuration errors or an interface

failure. Examples of configuration errors include:

■ incorrect database account name

■ protocol peers not defined in the alphasite table
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
■ missing public key for authentication

Examples of interface failures include:

■ ports to Connection Manager Server not available

■ Connection Manager Server process not responding

Unsuccessful connection requests are expected when the request does not adhere

to CD-1.1 protocol. Examples of these conditions include:

■ unrecognized protocol peer requests a connection

■ connection request received from a protocol peer that is already con-

nected

■ connection request received from a legitimate protocol peer that recently

terminated a connection, and the configured time-out period between

connections has not yet expired

Connec t ion Manage r Se rve r

Connection Manager Server works with Connection Manager to establish traditional

unicast or unicast catchup connections for a requesting protocol peer. Connection

Manager Server is not used for multicast connections. Connection Manager Server

processes port requests from Connection Manager, exchanges Option Request/

Response Frames with the connection requester, and starts Exchange Controller on

the server. Figure 18 shows the Connection Manager Server context.
61

s y s t e m C D - 1 . 1

a r y 2 0 0 3

62

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 18. CONNECTION MANAGER SERVER CONTEXT

I nput /P rocess ing /Output

The inputs to Connection Manager Server are as follows:

■ Run-time configuration information provides configuration data in the

parameter files. Parameter files provide information to describe logging

and operational behavior, and to identify valid connection ports for the

server host. Configuration parameters may be specified on the command

line but are provided most conveniently in the files themselves. Methods

of the libpar library are used to access configuration parameters.

■ Port request messages are sent from Connection Manager via socket

communications to Connection Manager Server. The message is a request

for the identifier of a socket that may be used for future data transmis-

sions to the host by a requesting protocol peer.

Manager
Connection

Server

parameter filesD1

Manager
Connection

peer
protocol

requesting
Option Request Frame

Option Response Frame

inetd

Controller
Exchange

D3
missing sequence
numbers

log filesD2
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
■ Option Request Frames are sent from a protocol peer requesting a con-

nection. This CD-1.1 frame is received via socket communication to final-

ize the connection negotiation between the local and remote protocol

peers. In catchup operation, Option Request Frames contain a list of

missing sequence numbers to be sent.

Connection Manager Server processing provides the following functions:

■ initializing program operations

■ responding to a port request

■ exchanging Option Request/Response Frames with a requesting protocol

peer

■ in unicast catchup operation, extracting the missing sequence numbers

from the Option Request Frame and writing them to a UNIX file

■ starting Exchange Controller

Connection Manager Server processing shares components (code) with Connection

Manager. Shared components are Frame Processing and Socket Processing. Descrip-

tions of these components are provided in the section on the “Connection Man-

ager” on page 54. Figure 19 shows the interaction of the Connection Manager

Server components. Initialization and configuration processing initializes logging

capability for status and error messages. Processing is also provided to read config-

uration parameter input, initialize signal handling, and read authentication

attributes.

Connection Manager Server responds to a port request message from Connection

Manager. If inetd is being used, data are read from standard input. If inetd is not

used, processing in Socket Processing is used to open and read the data from a

TCP/IP socket. The received port request message provides the name of the

requesting protocol peer and requests a TCP/IP connection port for further data

transmission. Socket Processing looks up the requester’s name in a list of peers that

this process instance is configured to support. If the requester is recognized, that is,

configured to be supported by this Connection Manager Server, a port response

message is created and is sent back to Connection Manager via standard out

(stdout) or a socket, depending on how the request message was received. If the
63

s y s t e m C D - 1 . 1

a r y 2 0 0 3

64

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
host is not configured for the requester, the port response message is not created

or sent. The port response message provides the port number that the requester

uses for further communication with Connection Manager Server on the executing

host. Connection Manager Server does not attempt to validate that multiple port

requests for the same protocol peer are not granted. Socket Processing depends on

Connection Manager to shield it from such occurrences.

FIGURE 19. CONNECTION MANAGER SERVER COMPONENTS

Connection Manager Server negotiates protocol options between protocol peers.

Option Request/Response Frame processing proceeds as follows:

1. Connection Manager Server uses Socket Processing capabilities to listen for

connections to the port provided in the port response message.

connection
request

port message

inetd

Manager
Connection

Server

1

peer
protocol

requesting

parameter files

Controller
Exchange

Manager
Connection

Processing
Socket

3

Processing
Frame

2

request
frame

processing

request
results

socket
request

socket
results

CD-1.1
frames

D1

D2
missing sequence
numbers
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
2. If no connection is made within a configured time-out interval, Connec-

tion Manager Server terminates.

3. When a connection is made Frame Processing capabilities are used to

read, verify, and identify an Option Request Frame.

4. The requester’s name provided in the Option Request Frame is verified

against the name received in the port request message.

5. The option specified is examined to verify compliance with the local site’s

capabilities.

6. The frame processing constructs and sends an Option Response Frame to

the requesting protocol peer over the now connected socket.

7. If the connection was correctly established, the open socket is the port

used for further transmissions between the local and remote protocol

peers. If not, the program logs the error and exits.

8. For unicast catchup connections, Connection Manager Server reads the list

of missing frame sequences from the Option Request Frame and writes

them to a file.

9. Connection Manager Server starts the Exchange Controller program and

passes it the open socket file descriptor as a command-line argument.

Connection Manager Server outputs are port response messages, CD-1.1 Option

Response Frames, missing frame sequence numbers, and log messages:

■ Port response messages are sent via socket communications to Connec-

tion Manager to provide an available connection port identifier.

■ Option Response Frames are returned to requesting protocol peers in

response to received Option Request Frames.

■ For unicast catchup connections, missing frame sequence numbers are

written to a file for input to Exchange Controller.

■ Errors and significant processing events are written to Connection Man-

ager Server’s log file using liblog functions to record processing activity.
65

s y s t e m C D - 1 . 1

a r y 2 0 0 3

66

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Cont ro l

■ Connection Manager Server is started by inetd when a Connection Man-

ager sends a port request message to a well-known host on the well-

known port.

■ If a successful connection is established, Connection Manager Server ter-

minates after starting the Exchange Controller process. When Exchange

Controller is started it overlays Connection Manager Server and assumes

its process ID (PID).

■ If a connection is not established Connection Manager Server logs the ter-

minating condition to its log file and exits.

I n te r f aces

■ Connection Manager Server interfaces with Connection Manager using a

TCP/IP connection. Data over this interface are port request and port

response messages.

■ The interface to a requesting protocol peer is over a TCP/IP socket con-

nection. This interface is used for CD-1.1 Option Request and Option

Response Frames.

■ The host file system interface is managed by liblog functions and is used

to log error conditions and significant processing events.

■ Connection Manager Server has a control interface with Exchange Control-

ler and uses the system service exec to start the process.

Er ro r S ta tes

Connection Manager Server execution results in either an established or undeter-

mined connection to a protocol peer. Unsuccessful connection attempts are most

likely the result of configuration errors. Probable configuration errors include:

■ The peer host name is not identified in the port configuration par file.

■ The public key for authentication is missing.

■ The path to the Exchange Controller executable is missing or incorrect.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
■ The path to the Exchange Controller parameter file is missing or incorrect.

A request is also denied if an Option Request Frame is received from an unantici-

pated source or for an unsupported option. This is not an error condition, but a

legitimate validation failure.

Data Cente r Manage r

Data Center Manager keeps other CDS CD-1.1 components running. It starts, mon-

itors, and restarts processes on host computers. Figure 20 shows the context of

Data Center Manager. Managed processes at the data center include Data Parser,

Connection Originator, and Missing Frame Detector. Because Exchange Controller

and Frame Exchange run as descendants of Connection Originator, Data Center

Manager shares partial responsibility for keeping these processes in operation. Data

Parser, Connection Originator, and Missing Frame Detector are categorized as child

processes in the context diagram (Figure 20). There are currently no processes con-

figured as command and control processes in Figure 20.

FIGURE 20. DATA CENTER MANAGER CONTEXT

Data Center Manager’s processing is centered around a queue of events, and its

internal structure reflects this model. An event for Data Center Manager is a pro-

cessing condition that requires action. Events may be synchronous or asynchro-

parameter filesD1
log messages

stdout, stderr

Center
Data

Manager

1

log fileD2

job templates,
event strings,

other parameters

messages

process
child

process
control

and
command
67

s y s t e m C D - 1 . 1

a r y 2 0 0 3

68

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
nous. Three of Data Center Manager’s internal objects wait for asynchronous

system events, translate them into Data Center Manager events, and enqueue the

events in an Eventqueue object (see Figure 21).

FIGURE 21. DATA CENTER MANAGER PROCESSING COMPONENTS

■ The Terminator object translates SIGTERM and SIGINT signals sent to

Data Center Manager into HaltRequest events.

■ The Reaper object waits for Data Center Manager’s child processes to exit,

and when they do, creates and enqueues ChildExited events.

Jobboard

1

Parser

2

Eventhandler

3

Eventqueue

4

Fdwatcher

8

Sleeper

5

Reaper

6

Terminator

7

 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
■ The Fdwatcher object waits for file descriptors to become active, then

creates an FDActive event for each active descriptor detected. File

descriptors are not monitored before they are given to Fdwatcher by

Eventhandler or after their FDActive events are enqueued.

Data Center Manager object Sleeper also puts events in Eventqueue. Rather than

creating events itself, Sleeper receives events from Eventhandler with a time value

indicating how long Sleeper is to wait before enqueuing.

The Eventhandler object removes events from Eventqueue and processes them.

Events are jobs that must be performed. To carry out the required processing,

Eventhandler retrieves and updates information about the job on Jobboard. Job

templates and the current state of Data Center Manager’s managed jobs are kept in

the Jobboard object.

Other sources of events for Eventhandler are par file definitions and messages from

command and control processes. The Data Parser object is used in both of the fol-

lowing situations:

■ when Jobboard is initialized and converts

fm- <jtid>-command-on-failure parameters into events

■ when input from child processes capable of providing control messages

are captured/read.

I nput /P rocess ing /Output

Data Center Manager’s inputs include messages received from command and con-

trol processes, standard out and standard error (stderr) and file output produced

by its managed processes, and configuration parameters defined through the stan-

dard libpar interface. Its outputs include error and status logging as well as mes-

sages sent to command and control processes (Figure 20 on page 67).
69

s y s t e m C D - 1 . 1

a r y 2 0 0 3

70

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Configuration parameters for Data Center Manager are read at startup time. One

special set of parameters defines Data Center Manager’s “job templates.” A job

template is a tuple consisting of the name of an executable program, some of its

command-line arguments, and other attributes that describe how Data Center

Manager should run the program (see Table 2).

A “job” is one instantiation of a job template. For each job, Data Center Manager

execs a new process that executes the job’s program. Data Center Manager waits

for the new process to exit and then repeats the fork/wait sequence. Data Center

Manager may concurrently manage multiple jobs instantiated from the same or dif-

ferent job templates.

The fm-initial-events parameter provides Data Center Manager with a list of

initial event strings. Event strings are the textual representations of “Events

Strings” processed by Data Center Manager (see Table 3).

In addition to configuration parameter inputs, Data Center Manager accepts TCP/IP

connections from “command and control” processes on a well-known port of Data

Center Manager’s host machine. Through these connections, the command and

control processes send messages containing event strings to Data Center Manager,

and Data Center Manager sends status messages to the command and control pro-

cesses.

TABLE 2: DATA CENTER MANAGER JOB TEMPLATE ATTRIBUTES

Configuration Parameter Name Attribute Description

jtid Job template ID. A character string that
uniquely identifies the job template. It is used
to refer to the job template in the configura-
tion parameters and in event strings.

fm- <jtid>-exec-path Name of the program to be run and possibly
some initial command-line arguments.

fm- <jtid>-min-runtime Minimum amount of time the program must
run before it is considered to have exited nor-
mally.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
fm- <jtid>-restart-waits List of times to wait before restarting the pro-
gram each time it exits abnormally.

fm- <jtid>-max-restarts Maximum number of times a program can
constructively exit abnormally.

fm- <jtid>-command-on-failure List of event strings for Data Center Manager
to parse and handle when a program has
exited abnormally too many times.

TABLE 3: DATA CENTER MANAGER EVENTS

Event Data Center Manager’s Action

JobRequest Instantiate a new job and schedule its program to be run.

HaltRequest (first) SIGTERM all running child processes and schedule a second
HaltRequest.

HaltRequest (next) SIGKILL any remaining child processes, and exit.

StatusRequest Send a status message to the requesting command and control
process.

RunJob Fork a new child process, and have the child execute the job’s
program.

FDActive (child pipe) Read from the pipe (the children’s stdout/stderr), and log
what is read.

FDActive (connection
request socket)

Accept the connection, creating a new file descriptor.

FDActive (command
and control socket)

Read a message from the socket, parse the event string it con-
tains, and handle the resulting event.

ChildExited Either schedule the job’s program to be restarted, or remove the
job; when a job is removed the job template may specify a
sequence of events for Data Center Manager to handle.

TABLE 2: DATA CENTER MANAGER JOB TEMPLATE ATTRIBUTES

Configuration Parameter Name Attribute Description
71

s y s t e m C D - 1 . 1

a r y 2 0 0 3

72

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Data Center Manager follows an event loop processing model: it maintains a queue

of event objects. In each iteration of its loop, it dequeues one event and handles

the event based upon the event’s type, attributes, and Data Center Manager’s cur-

rent internal state. In the course of handling one event, other events may be cre-

ated. Data Center Manager handles these events before returning to the top of the

main loop.

Cont ro l

Data Center Manager can be started by a system operator from the command line,

or a UNIX process such as init can be configured to start Data Center Manager at

system boot time.

Data Center Manager uses signals for interprocess control. It may be notified of a

child process’ exit with a SIGCHLD signal. A system operator may halt Data Center

Manager’s processing by sending it a SIGTERM or SIGINT. As part of Data Center

Manager’s shutdown procedure, it sends SIGTERM signals to any running child

processes, or SIGKILL signals if the processes do not respond to the SIGTERMs.

Data Center Manager terminates when it handles a HaltRequest (see Table 3).

SIGTERM and SIGINT signals sent to Data Center Manager are converted internally

to HaltRequest. Data Center Manager may also receive a message containing a

HaltRequest from a command and control process.

I n te r f aces

External interfaces for Data Center Manager are as follows:

■ A command line interface is used to start and terminate Data Center

Manager. This interface may also be exercised/executed from a shell

script.

■ Data Center Manager has a control interface with processes it manages.

Startup of processes occur through the fork and execute facilities of the

operating system. Termination is affected with process signals.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
■ Data Center Manager uses standard error and standard out data streams

as an interface mechanism with managed processes to receive input.

■ A TCP/IP socket connection interface is provided to interface with exter-

nal processes. No processes currently use this facility.

■ The host file system interface is managed by liblog functions and is used

to log error conditions and significant processing events.

Data Center Manager internal interfaces are between execution threads. Five

threads of control exist in Data Center Manager. Each of the four objects on the

right side of Figure 22 (Sleeper, Reaper, Terminator, and Fdwatcher) has one thread

running in it. Each of these four threads waits for the asynchronous system event

for which their object is responsible. When a system event is detected, a corre-

sponding event object is created, and an Eventqueue method is used to queue the

event.

The fifth thread runs the Eventhandler loop. This thread has the following inter-

faces:

■ The Eventqueue method is used to dequeue events.

■ The Jobboard and Data Parser methods are used to process events.

■ The Sleeper method is invoked to schedule an event for processing at a

later time.

■ The Fdwatcher method is used to put file descriptors in Fdwatcher’s mon-

itored descriptor set.

Contention between threads for shared resources is controlled by the following

three mutexes.

■ One mutex guards Eventqueue and is used by all five threads.

■ The Sleeper object mutex mediates between the Eventhandler thread and

the Sleeper thread, to control access to the set of events for delayed

enqueueing.

■ The Fdwatcher object controls shared access to the list of watched file

descriptors by Eventhandler and Fdwatcher threads.
73

s y s t e m C D - 1 . 1

a r y 2 0 0 3

74

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 22. DATA CENTER MANAGER INTERNAL CONTROL FLOW

Er ro r S ta tes

Data Center Manager is most likely to fail at initialization because of erroneous con-

figuration parameters. The log files usually provide diagnostic information for this

type of failure (if Data Center Manager’s logging component can be initialized

before the failure).

Jobboard

1

Data Parser

2

Eventhandler

3

Eventqueue

4

Fdwatcher

8

Sleeper

5

Reaper

6

Terminator

7

Main

9

 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
A Data Center Manager failure may result from exceeding the configured number

of controlled jobs, which may be a configuration error. For instance, a job template

may specify that two new jobs be instantiated to replace a failed job. Conse-

quently, the number of jobs could quickly grow too large.

Data Center Manager’s interface with command and control processes is another

potential failure mode. The protocol for the exchange of messages between Data

Center Manager and the command and control processes is not currently used.

Connec t ion Or i g ina to r

Connection Originator negotiates a TCP/IP connection using the CD-1.1 protocol

(Figure 23). For traditional unicast and unicast catchup operation, the TCP connec-

tion is used for connection, option, and data frames. For multicast operation, it is

used only for connection frames. Connection Originator then initiates a child pro-

cess to continue protocol exchanges. Child processes are either Exchange Controller

or Multicast Receiver.

FIGURE 23. CONNECTION ORIGINATOR CONTEXT

parameter filesD1

Originator
Connection

1

log fileD3

Connection Request Frame
Connection Response Frame

Option Request Frame
Option Response Frame

Manager
Center
Data

Server
Manager

Connection

Manager
Connection

processes
child

missing sequence
D2 numbers
75

s y s t e m C D - 1 . 1

a r y 2 0 0 3

76

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Exchange Controller is used in traditional unicast and unicast catchup modes and

inherits the TCP connection established by Connection Originator. Multicast

Receiver is used for multicast operation. It makes no use of the TCP connection.

Connection Originator consists of the following components:

■ ConnOrig contains the entry point for Connection Originator and is

responsible for initialization and overall control of the process.

■ co_portinfo provides methods for translating configuration parameters

into Internet port addresses.

■ co_tcp contains methods for negotiating a connection using the TCP/IP.

■ co_frames provides the ability to manipulate and create CD-1.1 frames.

■ co_exchcntl provides methods for executing child processes.

Figure 24 shows the relationships of these components.

FIGURE 24. CONNECTION ORIGINATOR INTERNAL DATA AND CONTROL
FLOW

co_tcp

3

co_portinfo

2

ConnOrig

1

co_frames

4

co_ecxhcntl

5

 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
I nput /P rocess ing /Output

Normal processing for Connection Originator consists of the following steps:

1. Read the configuration parameters through the libpar interface.

2. Establish a preliminary TCP/IP connection with a Connection Manager

specified in the configuration parameters.

3. Send Connection Manager a Connection Request Frame over the prelimi-

nary connection.

4. Receive a Connection Response Frame from Connection Manager over

the preliminary connection.

5. Close the preliminary connection.

6. Establish the main TCP/IP connection with Connection Manager Server,

whose address is contained in the Connection Response Frame.

7. For unicast catchup connections, read the missing sequence number list

and construct an Option Request Frame.

8. Send an Option Request Frame to Connection Manager Server over the

main connection.

9. Receive an Option Response Frame from Connection Manager Server

over the main connection.

10. Execute child process, passing control parameters as libpar parameters.

Cont ro l

Connection Originator is started by Data Center Manager. If Connection Originator

fails to originate its connection, it terminates. If it succeeds, its process becomes

the initiated child process using the UNIX exec command.

I n te r f aces

Connection Originator includes the following external interfaces:

■ An execution interface with Data Center Manager provides startup con-

trol.
77

s y s t e m C D - 1 . 1

a r y 2 0 0 3

78

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
■ The interface to the connection host (data consumer) is over a TCP/IP

socket connection. This interface is used for CD-1.1 Connection Request,

Connection Response, Option Request, and Option Response Frames.

■ The host file system interface is managed by liblog functions and is used

to log error conditions and significant processing events.

■ Connection Originator has a control interface with Exchange Controller

and Multicast Receiver and uses exec to instantiate the process.

Internal interfaces of Connection Originator are accomplished via C language func-

tion calls.

Er ro r S ta tes

Connection Originator can fail in the following ways:

■ cannot make sense of its configuration parameters

■ cannot establish one of its TCP/IP connections

■ cannot exchange valid frames with Connection Manager or Connection

Manager Server

■ cannot start Exchange Controller

■ cannot start Multicast Receiver

Each of these types of failure is logged in a Connection Originator log file. Although

failure to read configuration parameters and failure to execute child processes are

always fatal, Connection Originator can be configured to retry its connection

attempts if they fail and to specify fallback addresses to which a connection should

be attempted if the first address appears to be unreachable.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Exchange Cont ro l l e r

Exchange Controller provides policy control to the protocol frames handled by

Frame Exchange. Figure 25 shows the context of Exchange Controller. Frame

Exchange and Exchange Controller always exist as a processing pair where the pair

is instantiated once for each outbound or inbound connection at the IDC.

Exchange Controller is composed of three components:

■ Controller Executive

■ Exchange Interface

■ Frame Handler

FIGURE 25. EXCHANGE CONTROLLER CONTEXT

Figure 26 shows the data flow between these components. Frame References

(frame-ref) and Frame Requests (frame-req) are passed among several compo-

nents. The following paragraphs present the design of each of these subcompo-

nents.

Controller
Exchange

1

Frame StoreD3

Exchange
Frame

log fileD4

frame
messages

parameter filesD2

missing sequence
D1 numbers

Manager
Connection

Originator
Connection

Server
79

s y s t e m C D - 1 . 1

a r y 2 0 0 3

80

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 26. EXCHANGE CONTROLLER DATA FLOW

Controller Executive coordinates the processing of Exchange Controller. Controller

Executive is responsible for initializing each of the sibling objects in Exchange Con-

troller. After initialization, Controller Executive begins a control cycle wherein Frame

Handler and Exchange Interface components are invoked to carry out their process-

ing. When the Exchange Controller is terminated, Controller Executive orchestrates

an orderly cleanup and shutdown of the other processing objects.

Executive
Controller

1

Interface
Exchange

3

Handler
Frame

2

Exchange
Frame

frame-req frame-ref

frame-ref

frame-req, frame-ref

Frame StoreD3

parameter filesD1

missing sequence
D2 numbers

Manager
Connection

Originator
Connection

Server
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Exchange Interface implements the software interface to Frame Exchange. This com-

ponent sends frames and frame messages to Frame Exchange, and receives frame

messages from Frame Exchange. Frame messages are examined for content and

acted upon by Exchange Interface. In general, frame messages result in calling spe-

cific functions to process this class of frame message. The functions provided by

Exchange Interface are service-level functions with limited knowledge of the con-

tent or reason for the data they handle.

Frame Handler manages Data Frames for Exchange Controller. Frame Handler pro-

vides functions for accessing the Frame Store including: opening for access, polling

for unacknowledged frames (for startup), and polling for newly arrived frames (in

traditional unicast operation). Frame Handler is responsible for ordering frames to

be sent in a proper order, then supplying the frames to Exchange Interface for send-

ing.

Cont ro l l e r Execu t i ve

Controller Executive provides the main entry point for Exchange Controller.

Exchange Controller is initiated by either Connection Originator or Connection Man-

ager Server based on whether an outbound or inbound connection is to be ser-

viced, respectively. The UNIX command-line style command to start the process

provides a communication socket file descriptor, connection source/destination

indicator, a parameter file designation, and, in the case of unicast catchup, a miss-

ing frame sequence numbers file designation. The parameter file supplied to

Exchange Controller provides run-time configuration values for customizing the

execution of the process. The configuration parameter file used by Exchange Con-

troller is shared with Frame Exchange, which aids in synchronizing the processing of

the two processes. At startup Exchange Controller reads configuration values from

the command line and parameter files and opens UNIX communication pipes for

communicating with Frame Exchange. As part of the initialization process Controller

Executive execs the companion Frame Exchange process. After completing its ini-

tialization Controller Executive issues requests to multiple elements of Exchange

Controller.
81

s y s t e m C D - 1 . 1

a r y 2 0 0 3

82

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
After initialization, Controller Executive enters steady state processing and requests

services of Exchange Interface and Frame Handler to determine if any communica-

tions have been received from Frame Exchange or if any new frames must be pro-

vided to Frame Exchange, respectively.

In each processing iteration Controller Executive checks for an error indication

(necessitating termination). Additionally, Controller Executive provides signal han-

dling processing for Exchange Controller. When a fatal signal is caught or fatal error

is encountered, Controller Executive attempts a graceful termination for itself, its

companion Frame Exchange, and the protocol peer Exchange Controller/Frame

Exchange pair.

In unicast catchup operation, Exchange Controller exits when all available frames

identified by the missing frame sequence numbers have been sent.

Exchange In te r face

At initialization the Exchange Interface component establishes communication with

the companion Frame Exchange process by exchanging a “hand-shake” message.

If this initial communication fails, the Exchange Interface returns an initialization

failure to Controller Executive (typically a fatal condition).

During steady state operation of Exchange Controller, Exchange Interface is periodi-

cally requested to poll for frame messages from its companion Frame Exchange.

When a frame message is discovered Exchange Interface initiates appropriate pro-

cessing to resolve the message. For an instantiation servicing an inbound connec-

tion, typically only Data Frame message notifications are received, which causes no

further processing. For an instantiation servicing an outbound connection, typically

only acknowledgment frame messages are received. The acknowledgement frame

message results in a request to Frame Handler to mark/log a successful transaction

of the identified frame. If a time-out or alert message is received from Frame

Exchange, a Controller Executive method is invoked to gracefully terminate

Exchange Controller, Frame Exchange, and the Exchange Controller/Frame Exchange

pair of the protocol peer.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Frame Hand le r

Frame Handler is the largest Exchange Controller component. At initialization time

Frame Handler reads configuration parameters controlling, among other items, the

priority scheme for sent protocol frames and opens all Frame Store frame sets to be

used by Exchange Controller. Frame Handler categorizes the frame sets it uses as

follows:

■ reading frame sets–those with frames from the protocol peer

■ writing frame sets–for frames created by Exchange Controller, which

would typically contain only Alert Frames for termination

■ polling frame sets–for frames to be sent to the protocol peer

■ special logging frame set–for logging the transaction state of frames sent

from the polling sets

For traditional unicast initialization, Frame Handler attempts to recover from its last

execution as follows:

1. When a logging frame set is opened Frame Handler determines if the set

is empty.

2. If the frame set is empty, Frame Handler assumes that a serious failure has

occurred, causing the zero content. A serious failure results in a frame

message for Frame Exchange to request a complete resynchronization of

frame sets with the protocol peer.

3. When the logging frame set is not empty Frame Handler gets (from the

logging set) those frames that were sent to the protocol peer, but not

acknowledged as received by the protocol peer.

4. These frames are then resubmitted to Frame Exchange (via Exchange

Interface) for sending to the protocol peer.

For unicast catchup initialization, Frame Handler reads the missing sequence num-

ber file for frames to be sent.
83

s y s t e m C D - 1 . 1

a r y 2 0 0 3

84

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
During steady state operation an instantiation servicing an outbound connection

polls the polling sets for new frames that need to be sent. Frames to be sent are

given a send priority based on data time (for Data Frames) and configured trans-

mission policy (for example, LIFO or FIFO) and communicated to Exchange Inter-

face. Sent frames are logged as being queued for sending in the special logging

frame set.

As part of a graceful termination Frame Handler creates an Alert Frame notifying

both the local Frame Exchange and the protocol peer Exchange Controller/Frame

Exchange pair that a shutdown should be executed. The Alert Frame is provided to

Exchange Interface for proper propagation. After providing the Alert Frame, Frame

Handler closes all open frame sets and returns control to Controller Executive.

I nput /P rocess ing /Output

Exchange Controller is initiated by either Connection Originator or Connection Man-

ager Server and is based on whether an outbound or inbound connection is to be

serviced, respectively. A companion Frame Exchange process is exec ’d by Exchange

Controller, and the Frame Store frame sets are opened.

Exchange Controller polls Frame Exchange for messages and takes action based on

the content of the received message. During steady-state operation Exchange Con-

troller typically only receives notifications about Data Frames received, which

causes no further processing, and acknowledgments for frames sent by Frame

Exchange. Exchange Controller polls frame sets for new frames that need to be sent.

Frame to be sent are given a send priority and are communicated to Frame

Exchange, which affects the transmission. If an Alert Frame or time-out message is

received from Frame Exchange, termination processing is invoked for the graceful

shutdown of the protocol peer processes.

Cont ro l

Exchange Controller requires as one of its command-line arguments the value of an

open file descriptor to a communications port. For this reason, the process is

always initiated by another program: Connection Originator for outbound connec-
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
tions and Connection Manager Server for inbound connections. This startup method

has the advantage of previously establishing a validated communication port to

the protocol peer and diminishes the opportunities for failed startups of the

Exchange Controller/Frame Exchange pair. After Exchange Controller has initialized,

the process is controlled via asynchronous events which are either the receipt of a

frame message from Frame Exchange in Exchange Interface or, for traditional unicast

operation, the discovery of new frames in polled frame sets by Frame Handler. The

discovery of new frames results in a request that the frame be sent by Frame

Exchange to the protocol peer. Frame messages from Frame Exchange trigger pro-

cessing in Exchange Controller based on the type and content of the message. In

particular:

■ If a time-out is received from Frame Exchange indicating that the connec-

tion to the protocol peer is lost, Exchange Controller initiates a termina-

tion of Frame Exchange and itself.

■ If an Alert Frame is received by Frame Exchange and communicated to

Exchange Controller, Exchange Controller initiates a termination sequence.

The Controller Executive component of Exchange Controller contains a signal han-

dler that responds to termination signals. Execution of the signal handler results in

an orderly shutdown of the Exchange Controller/Frame Exchange pair. The signal

handler is invoked when a controlling program wants to terminate Exchange Con-

troller, for example, Data Center Manager wants to terminate an instance servicing

a forwarding connection.

In the absence of a terminating signal or message, Exchange Controller executes

indefinitely for traditional unicast operation. For unicast catchup operation,

Exchange Controller exits after the missing frames have been sent and acknowl-

edged.

I n te r f aces

Exchange Controller has external interfaces with Frame Exchange, the Frame Store,

and the UNIX file system through the logging library and the missing frame

sequence numbers file.
85

s y s t e m C D - 1 . 1

a r y 2 0 0 3

86

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The interface between Exchange Controller and Frame Exchange is encapsulated in

the processing of Exchange Interface and is realized with the UNIX pipe facility,

which supports bidirectional communication between the processes. Exchange

Controller is responsible for the creation of pipes in both directions and provides

file descriptors to Frame Exchange when it is forked. A data structure called a frame

message is used to communicate information over the pipes; both Frame Exchange

and Exchange Controller are capable of creating, sending, and receiving frame mes-

sages.

The Frame Store access is encapsulated in the Frame Handler component of

Exchange Controller. The Frame Store is accessed to discover frames that must be

sent, to retrieve frames that have been received, and to store the created frames.

Access to the frame sets within the Frame Store is via the application program

interface provided by libfs functions. These functions allow Frame Handler to query,

retrieve, update, and create data entries. Generally, Exchange Controller is passive

with respect to the Frame Store, that is, it operates in a read-only mode. The fol-

lowing are exceptions to this rule:

■ The logging of frame status is queued for sending and is acknowledged

as received. (Exchange Controller uses a built-in capability of the Frame

Store to handle logging.)

■ The creation of Alert Frames, which trigger graceful termination, are

saved in the Frame Store.

All components of Exchange Controller can use liblog to write to a log file to record

execution events.

Internally, interfaces between the elements of Exchange Controller are almost

entirely via function calls. In a few instances data objects are visible between pro-

cessing objects (global). These items are placed in the header files of the defining

processing object/component and are kept to a minimum. When larger data struc-

tures are used between functions, access to the structures is by reference, as

opposed to by value (passing whole structures).
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Er ro r S ta tes

Exchange Controller writes program execution information to a log file. The loca-

tion and name of this file are configurable and are specified in the configuration file

provided on the command line when the program is invoked. The log file is an

ASCII text file. Each log entry made by Exchange Controller specifies the routine

that logged the message, and for error conditions, the log number of the message;

log numbers for Exchange Controller are in the range of 12,000–12,999. Because

log messages from other CDS CD-1.1 components are not commingled with

Exchange Controller log messages, log numbers may be largely ignored. Within the

range of allocated numbers there is no scheme to the assignment of values.

Prior to invoking Exchange Controller the initiating program establishes a communi-

cation port with the protocol peer. If this process fails Exchange Controller is not

invoked. Although this may appear to be an Exchange Controller failure, the actual

processing of Exchange Controller has not yet started, and therefore this condition

is a failure during the processing of the initiating program. This condition is

detected by the absence of an Exchange Controller log file, that is, if the log file was

created (new file time) then Exchange Controller began its execution, because log

file creation is one of the first actions of the program. If the log file was not created

then there was a problem with the invoking program. The exception to this is

when a problem is encountered in reading the configuration file for the log file

specification, in which case, Exchange Controller terminates with diagnostic output

going to UNIX standard out and the operating system’s syslog.

Most failures of Exchange Controller are from faulty configuration. In particular the

software must be configured as follows prior to program execution:

■ The log directory specified in the configuration file exists and is writable

by the program.

■ The Frame Store configuration file identified in the configuration file is

complete and correct.

■ All frame sets used by Exchange Controller (specified in the configuration

file) exist along with their associated frame log files and are described in

the Frame Store configuration file.
87

s y s t e m C D - 1 . 1

a r y 2 0 0 3

88

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
■ The path to Frame Exchange program is correct; Frame Exchange exists,

and the specified parameter file for Frame Exchange is correct. Exchange

Controller and Frame Exchange should use the same configuration file.

■ The path to authentication certificate directories exists and is correct; it is

contained in the configuration file.

At program initialization Exchange Controller and Frame Exchange exchange frame

messages to communicate that they are ready for execution. If the Frame Exchange

fails to provide this message then Exchange Controller times-out, provides a mes-

sage in the log file, and exits.

Frame Exchange

The purpose of Frame Exchange is to provide reliable low-level processing to move

CD-1.1 frames from one protocol peer to another. In particular, Frame Exchange,

along with its associated Exchange Controller attempts to duplicate the content of

frame sets in a local Frame Store in a remote Frame Store through the transmission

and acknowledgement of frames sent and received. As presented in the discussion

of “Exchange Controller” on page 79, Frame Exchange always exists as a process-

ing pair with its associated Exchange Controller. The processing pair is instantiated

once for every connection at the IDC. Figure 27 shows the context of Frame

Exchange.

FIGURE 27. FRAME EXCHANGE CONTEXT

parameter filesD1

Exchange
Frame

1

log fileD2
peer

protocol

Frame StoreD3

Controller
Exchange

CD-1.1 frames
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Frame Exchange is composed of the following subcomponents:

■ Frame I/O–libfio

■ Heartbeat

■ Main Loop

■ Message Sender

■ Sender–one instantiation for each frame set

■ Time Counter

All components but Time Counter are manifest as a processing thread. Frame I/O is

manifest as a grouping of library/utility type functions. The following paragraphs

present the design of each of these subcomponents. Figure 28 shows the interac-

tions of these components.

FIGURE 28. FRAME EXCHANGE COMPONENTS

Ack
Nack

frames

Controller
Exchange

frame
messages

frame
messages

Loop
Main

1

Counter
Time

4

Sender
Message

5

peer
protocol

Sender

3

parameter fileD1

Frame Store

CD-1.1 frames

frames

send
frames

time

frames

CD-1.1
frames

Heartbeat

2
D2
89

s y s t e m C D - 1 . 1

a r y 2 0 0 3

90

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Main Loop

Main Loop provides the main entry point for the UNIX process (Frame Exchange).

As its name implies, Main Loop contains the central processing frame of the pro-

cess. Main Loop is initiated by Exchange Controller to service either an outbound or

inbound connection. The UNIX command-line style command to start Exchange

Controller provides a communication socket file descriptor (to a remote Frame

Exchange), a communication pipe file descriptor (to the associated Exchange Con-

troller), and a parameter file designation. The parameter file supplied to Frame

Exchange provides run-time configuration values for customizing the execution of

the process. The configuration parameter file used by Frame Exchange is shared

with Exchange Controller. Sharing parameter files aids in synchronizing the process-

ing of the two processes. At startup Frame Exchange reads configuration values and

initializes internal data structures used by sibling processing threads. After success-

ful initialization, Main Loop processing instantiates all the required processing

threads for Frame Exchange.

After all threads are forked, Main Loop enters its steady state operating loop where

it iterates until a terminating condition is encountered. In each processing iteration

Frame Exchange checks a timer value to verify that communication to the peer

exchange has occurred before the time-out threshold. If the threshold is exceeded

the processing terminates processing threads, closes open resources, and exits.

Assuming there is no time-out Main Loop checks for inbound communication.

Input may be received from the peer Frame Exchange over an open socket or from

Exchange Controller over an open pipe. Main Loop examines the type of communi-

cation/message received and branches appropriately for handling the message.

T ime Counte r

Time Counter provides an independent execution thread for providing elapsed time

counting and is the simplest of the Frame Exchange threads. Time Counter consists

of a processing loop, which updates a time counter for each iteration. As a sepa-

rate execution thread, the counter provides other processing threads with a con-

cept of elapsed time. The time counter exported by Time Counter is protected

through the use of mutexes.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Hear tbea t

Heartbeat is responsible for sending AckNack messages to a Frame Exchange peer.

The AckNack message and Heartbeat component fulfill two objectives for Frame

Exchange. First, the AckNack message serves as a keep-alive or Heartbeat notifica-

tion to the peer Frame Exchange. In the event that no frames need to be sent

between two Frame Exchanges, the AckNack message provides assurance to the

peer process that the communication line is still open and that the peer process is

alive. The second objective is to provide positive feedback regarding the successful

receipt of protocol frames. This second objective is accomplished using gap lists,

which the Frame Exchange uses to track messages sent. One gap list exists for each

frame set accessed by Frame Exchange.

Heartbeat processing consists of a loop where the processing checks the gap list

and Heartbeat interval to determine if an AckNack message should be sent. As nec-

essary, the AckNack message is constructed and queued for sending to the peer

Frame Exchange.

Message Sender

Message Sender is responsible for sending frame messages to Frame Exchange’s

associated Exchange Controller. A frame message is a data structure that the Frame

Exchange and Exchange Controller use to communicate. In use, either one of these

processes may instantiate a frame message data object, assign data values to its

fields, and write the object to the communication pipe. The frame message is an

application program entity and should not be confused with CD-1.1 frames.

Message Sender, like the other processing threads, consists of a loop wherein a

message queue is polled for messages that must be sent. When messages are dis-

covered on the queue, they are removed and written to the communications pipe.

Frame messages are most often placed on the frame message queue by processing

in the Main Loop component in response to either a frame from the protocol peer

or other processing.
91

s y s t e m C D - 1 . 1

a r y 2 0 0 3

92

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Sender

Sender is instantiated once for each frame set accessed by Frame Exchange and is

responsible for sending queued frames to the peer Frame Exchange over the com-

munication socket. While Sender may be instantiated several times, there is only

one open socket to the protocol peer. Consequentially, a mutex is used to guard

access and use of the socket resource. The Sender design is loop based, in which

the instantiated thread continues iterating until a terminating condition is encoun-

tered. In each iteration Sender checks the age of sent frames and checks for new

frames that need to be sent. When the age of a frame exceeds a configured

threshold, Sender resends the frame.

Frame I /O

Frame I/O is a grouping of routines that provides low-level input and output pro-

cessing needed by other components of Frame Exchange for sending and receiving

frames. Additionally, Frame I/O is constructed as an archive library to allow other

processes to take advantage of its processing capabilities.

Process ing L i s t s

In addition to the processing components listed above, an important part of Frame

Exchange design is its use of lists. Lists are used by Frame Exchange to manage

frame sending activities. A set of lists is instantiated for each frame set accessed by

Frame Exchange (with the exception of the message queue). The list set is loosely

associated with a Sender instantiation. The four lists used by Frame Exchange are:

■ priority queue

■ sent list

■ gap list

■ message queue
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
The priority queue is a list of frames to be sent to a protocol peer. Frames are

placed in this list by processing in Main Loop based on a priority value provided by

Exchange Controller with the frame. The Sender component pulls frames off the top

of this list and sends them to the protocol peer. A frame that has been sent is

marked by Sender as being sent, which effectively places it on the sent list.

The sent list contains those frames that have been sent, but have not yet com-

pleted acknowledgement processing. Frames are placed on this list by the Sender

component, which is also responsible for removing them. A frame is removed from

the sent list either because it was acknowledged or was not acknowledged and

needed to be resent. (See the following gap list discussion for information on

acknowledgement determination.) In each processing iteration the Sender compo-

nent increments the age of the sent list frames and monitors the age with respect

to a configured threshold. When a frame has aged beyond the threshold, it is

removed from the sent list and placed back on the priority queue to be resent.

The gap list contains entries that identify gaps in frame sequence numbers of

frames that were acknowledged by the protocol peer. For example, if frames 1–10

were sent, and only frames 5 and 6 were not acknowledged, the gap list would

have one entry identifying 5 as the first missed frame and 7 as the next present

frame. When a frame is acknowledged, the Main Loop component updates a

frame set gap list. For each processing iteration Sender checks the frames on its

sent list with its gap list. When the gap list indicates that a sent list frame has been

acknowledged, Sender marks the frame as being acknowledged. Main Loop pro-

cessing examines the sent list for acknowledged entries and creates message

queue entries to notify Exchange Controller about acknowledged frames. An

acknowledged frame then has its sent list entry set by Main Loop to show it as

available for deletion. Sender removes the sent list entries marked for deletion.

The message queue is a list of frame messages sent to Exchange Controller. Typi-

cally these messages announce the arrival of or the acknowledgement of a frame.

The messages are placed on the queue by Main Loop processing. Message Sender

takes messages off the top of the queue and sends them to Exchange Controller.
93

s y s t e m C D - 1 . 1

a r y 2 0 0 3

94

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
I nput /P rocess ing /Output

Frame Exchange requires open file descriptors for I/O as input to Exchange

Controller and the peer Frame Exchange (see “Main Loop” on page 90). Addition-

ally, Frame Exchange accepts command-line style arguments that are read at initial-

ization time to specify run-time configuration options.

During steady state operation (not initialization) three I/O entities are used by

Frame Exchange:

■ communication pipe from Exchange Controller

■ TCP/IP socket to the peer Frame Exchange

■ Frame Store

As an input source, the Exchange Controller communication pipe is used to provide

frame processing requests and notifications. The frame processing requests are

used to send a frame. Frame Exchange retrieves an identified frame from the Frame

Store, and uses the priority value provided by Exchange Controller to put the frame

into the priority queue for sending to the peer Frame Exchange. If an alert notifica-

tion is received from Exchange Controller over this interface, Frame Exchange termi-

nates all its processing threads and exits. Output to the communication pipe are

frame and alert notifications. A frame notification is provided after successfully

receiving and storing a frame from the peer Frame Exchange. Alert notifications are

provided to notify Exchange Controller about terminating conditions, such as the

receipt of an Alert Frame, a time-out on Heartbeat from the peer Frame Exchange,

or a broken socket signal (SIGPIPE). Data exchanged across the communication

pipe interface are formatted according to a program data structure called a frame

message.

Input from and output to the peer Frame Exchange occur over a TCP/IP socket.

Data exchanged over this interface are CD-1.1 frames. When a frame is received

Frame Exchange first determines if the frame is an alert or AckNack Frame. Alert

frames trigger shutdown processing of Frame Exchange and its Exchange Controller.

AckNack Frames serve two purposes: to provide a heartbeat signal between peer

Frame Exchanges and to acknowledge frames received. When an AckNack is

received, Frame Exchange resets its heartbeat timer and then processes the frame’s
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
contents to update the gap list(s) for frames sent. AckNack Frames are not saved in

the Frame Store. Any other frame received is stored in the Frame Store and results

in sending a frame message to Exchange Controller.

The Frame Store is accessed for storing and retrieving CD-1.1 frames. Frames

received from the peer Frame Exchange are written to the Frame Store. Frames to

be sent to the peer Frame Exchange are retrieved from the Frame Store (see

“Socket Processing” on page 59). All access to the Frame Store is via the applica-

tion program interface provided by libfs.

Cont ro l

Frame Exchange is always initiated by Exchange Controller. At startup Frame

Exchange and Exchange Controller coordinate opening the Frame Store frame sets

that are accessed by both programs by sending each other frame messages to sig-

nal an okay to proceed. After this coordination and after all needed frame sets are

opened, Frame Exchange instantiates all of its processing threads.

Each thread of Frame Exchange executes independently from other threads, includ-

ing the main thread (though the main retains the ability to cancel/terminate the

other threads). While all threads execute independently they all rely on data in a

common address space. To protect the fidelity of data and execution of the pro-

gram, mutexes are used for controlling data access and interaction between the

threads. In instances when a common resource is needed a given thread’s execu-

tion may be suspended because of a mutex lock. A thread suspended in this way

resumes execution as soon as the needed mutex is released/unlocked by the hold-

ing thread. The coding of Frame Exchange is optimized to reduce mutex lock times.

Beyond mutex suspended instances, the threads of Frame Exchange are cyclic in

execution. During each execution cycle, the thread responds to control values,

input, and output according to their purpose.

Frame Exchange executes indefinitely in the absence of a terminating condition or

communication. The following conditions cause Frame Exchange to execute an

orderly shutdown and exit:

■ An Alert Frame is received from the peer Frame Exchange.
95

s y s t e m C D - 1 . 1

a r y 2 0 0 3

96

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
■ An Alert Frame message is received from Exchange Controller.

■ A time-out occurs on receiving an AckNack Frame as a heartbeat from

the peer Frame Exchange.

■ The socket to the peer Frame Exchange is broken/closed.

■ The pipe to Exchange Controller is broken/closed.

In each of the above conditions Frame Exchange attempts to notify Exchange Con-

troller and peer Frame Exchange, as appropriate, about the condition. Frame

Exchange then terminates all processing threads, closes open frame sets, and exits.

I n te r f aces

Frame Exchange has external interfaces with Exchange Controller, a peer Frame

Exchange, the Frame Store, and the UNIX file system through the logging library:

■ The interface between Frame Exchange and Exchange Controller is real-

ized with the UNIX pipe facility, which supports bidirectional communica-

tion between the processes. A data structure, called a frame message, is

used to communicate information over the pipes. Both Frame Exchange

and Exchange Controller are capable of creating, sending, and receiving

frame messages.

■ An interface to the peer Frame Exchange is conducted over a TCP/IP

socket and is bidirectional. The messages sent over this interface are

frames of the CD-1.1 protocol.

■ The Frame Store is accessed to retrieve frames that need to be sent and

to store frames that have been received. Access to the frame sets within

the Frame Store is via the application program interface provided by libfs.

■ All threads and components of Frame Exchange have the capability to

write to a log file for recording execution events. The common liblog

library is used to write to the file system and to manage file creation/

manipulation.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Internally the threads of Frame Exchange interface with one another through data

in the common address space. When each thread is created it is provided with a

pointer to a shared data structure. The scope of data in common for any given

thread is dependent on design considerations, so not all threads have access to the

same set of data; that is, the same pointer is not provided to all threads. See “Pro-

cessing Lists” on page 92 for a discussion of the key common address space data

entities. A thread communicates and provides data values to other threads by sim-

ply setting variables in the shared structure. Access to shared data is controlled by

mutexes to avoid collisions between the processing of two or more threads. See

“Control” on page 95 for information on how mutexes influence execution con-

trol.

Er ro r S ta tes

Frame Exchange and Exchange Controller share failure modes related to suitability of

the operational environment. The following conditions must exist for Frame

Exchange to execute correctly at startup:

■ The log directory specified in the configuration file exists and is writable

by the program.

■ The Frame Store configuration file identified in the configuration file is

complete and correct.

■ The frame sets used by Frame Exchange (specified in the configuration

file) exist along with their associated frame log files; these are the frame

sets and frame logs described in the Frame Store configuration file.

■ The path to authentication certificate directories exists and is correct and

contained in the configuration file.

At program initialization Exchange Controller and Frame Exchange exchange mes-

sages to communicate that they are ready for execution. If Exchange Controller fails

to provide this message, Frame Exchange is suspended in a perpetual wait until it is

killed manually.
97

s y s t e m C D - 1 . 1

a r y 2 0 0 3

98

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
After initialization is complete and the program enters steady state operation, all

anticipated error conditions are logged to Frame Exchange’s log file. The following

error conditions may be experienced:

■ A broken pipe error occurs when communication is lost to the Exchange

Controller; Frame Exchange exits in this condition.

■ A broken connection to peer error occurs when the communication con-

nection to the peer Frame Exchange is lost; Frame Exchange exits in this

condition.

■ A peer time-out error occurs when the time threshold for receiving an

AckNack Frame from the peer Frame Exchange is exceeded; Frame

Exchange exits in this condition.

■ A frame received already accounted for error occurs when Frame

Exchange determines that a received frame already exists. This error may

occur because of processing latency, that is, a frame is resent before an

acknowledgement is received; the duplicate frame is ignored.

Mul t i ca s t Sender

Multicast Sender resides on a multicast data provider. It reads frames from a Frame

Store, fragments them into packets, and sends the packets to the multicast group.

Figure 29 shows the context for Multicast Sender.

FIGURE 29. MULTICAST SENDER CONTEXT

parameter filesD1

log fileD3

Frame StoreD2
data packets

Sender
Multicast

1

Receivers
Multicast

PNack packets

Manager
Data Center
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Multicast Sender listens on a UDP unicast port for PNack packets sent by data con-

sumers requesting missing data packets. If the requested data packets are still

available in its buffer, it remulticasts them to the multicast group. If not, it silently

ignores the PNack request. Multicast Sender maintains a history of its activities in a

log file.

Process ing

Figure 30 shows data and control flow for Multicast Sender. Multicast Sender con-

sists of five main objects:

■ MCastProvider

■ PacketList

■ MCastFrame

■ CDS_Socket

■ CDS_Signal (not shown)

FIGURE 30. MULTICAST SENDER DATA AND CONTROL FLOW

data
packets

Provider
MCast

1

List
Packet

4

Receivers
Multicast

parameter fileD1

Frame StoreD2

Socket
CDS_

2

Socket
CDS_

3

connection
information,
data packets

Frame
MCast

5

frames

initialization
frame

handles

connection
information

frame
handles

data
packets

PNack
packets

PNack
packets

PNack
packets

data
packets
99

s y s t e m C D - 1 . 1

a r y 2 0 0 3

100

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
MCastP rov ide r

MCastProvider is responsible for the following:

■ Initialization of the Multicast Sender application

■ Main processing loop

■ Shutdown of the application

MCastProvider is the main processing object for the Multicast Sender application.

This object controls the timing and execution of all processing methods required to

retrieve, fragment and multicast CD-1.1 frames. Processing initiated by this object

is divided into five areas:

■ Process initialization

■ Data input

■ Frame fragmentation

■ Multicast rate control

■ PNack packet processing

MCastProvider is started from the command line or using Data Center Manager.

Process initialization occurs once, at startup. This processing establishes two socket

connections, initializes and creates PacketList, opens the Frame Store for reading,

and sets up logging and configuration parameters used by the application. Once

initialization has completed successfully, MCastProvider enters “main loop” pro-

cessing. If any part of initialization fails, MCastProvider terminates.

Data input encompasses two types and sources of data, packetized frames and

PNacks. CD-1.1 frames are retrieved from the Frame Store using methods from

MCastFrame. PNack packets come from the data consumers via a UDP unicast port

and are passed directly to PacketList for further processing. Receipt of a PNack

packet tells PacketList that some packets were not received by a data consumer

and need to be remulticast.

Frame fragmentation is the process of segmenting a CD-1.1 frame into data pack-

ets. Each data packet contains a header and a portion of the CD-1.1 frame. MCast-

Frame is responsible for frame fragmentation. Data packets are stored in PacketList.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
MCastProvider is responsible for controlling the delivery rate of the packetized

frames via multicast socket. At start up, a maximum transmission rate is established

via an initialization parameter. MCastProvider uses this rate to determine how

many packets can be sent over the network for a given period of time. Rate-based

flow control attempts to avoid overwhelming the network with traffic and thus

reduce collisions and packet loss. As a consequence, packet delivery may fall

behind for a period of time. In this case, MCastProvider refrains from retrieving

new frames until sufficient space is available in PacketList.

If MCastProvider receives a signal to shutdown, MCastProvider begins its shutdown

procedure and sends a packetized CD-1.1 Alert Frame via multicast socket notify-

ing the multicast group of an impending shutdown. Once the alert has been sent,

sockets are closed, the Frame Store is closed, and MCastProvider exits.

Packe tL i s t

PacketList performs packet management for data consumers and data providers.

For a data provider, PacketList is responsible for the following:

■ Initializing the PacketList

■ Storing and retrieving data packets

■ Processing PNack packets

As frames are retrieved from the Frame Store, they are fragmented into packets

and stored in PacketList where they are kept until overwritten by circular buffer

management. PacketList also maintains the number of times each packet is sent

and the last time the packet was sent. These numbers allow PacketList to cull out

duplicate or premature requests for the packet.

PacketList receives PNack packets from MCastProvider, processes them, and if the

missing packets are still in the internal buffer, sends them to MCastProvider for

remulticast. PNack packets may be received from different data consumers identi-

fying the same missing packet. PacketList ignores duplicate PNacks and remulti-

casts a packet only once for a given period.
101

s y s t e m C D - 1 . 1

a r y 2 0 0 3

102

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
MCastF rame

MCastFrame performs frame management and transformations between frames

and packets for data consumers and data providers. MCastFrame is derived from

the CDS_Frame object. It augments the CDS_Frame functionality with methods to

perform frame fragmentation and reassembly, and frame verification.

For a data provider, MCastFrame is responsible for the following:

■ Retrieving frames from the Frame Store in FIFO order.

■ Fragmenting frames into packets.

MCastFrame is instantiated by MCastProvider for each CD-1.1 frame that is to be

retrieved from the Frame Store. MCastFrame uses libfs to read frames from the

Frame Store and fragments them based on the packet size provided at initializa-

tion. Constructed packets are provided to PacketList for further processing. Once

fragmentation is complete, the object is destroyed.

CDS_Socke t

CDS_Socket is responsible for the following:

■ Creating a socket connection

■ Reading from a socket

■ Writing to a socket

■ Closing socket connection

CDS_Socket contains methods for interfacing with a socket. These methods pro-

vide the object user a flexible, full-service interface with a socket. CDS_Socket

allows a caller to specify the parameters of the socket via calling parameters during

initialization. At termination, CDS_Socket closes the socket and informs the caller of

the termination.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Er ro r S ta tes

Multicast Sender is most likely to fail at initialization because of erroneous configu-

ration parameters. The log files usually provide diagnostic information for this type

of failure (if Multicast Sender’s logging component can be initialized before the fail-

ure). The following error conditions may occur at startup:

■ The log directory specified in the configuration file does not exist or is

not writable by the program.

■ The Frame Store configuration file identified in the configuration file is

not complete and correct.

■ The frame sets used by Multicast Sender (specified in the configuration

file) and their associated frame log files do not exist.

■ The socket for the multicast group or UDP unicast PNack port cannot be

opened.

After initialization is complete and the program enters steady state operation, all

anticipated error conditions are logged. The following error conditions may be

experienced:

■ A frame read from the Frame Store fails CRC check.

■ The list of missing packets in a PNack exceeds the size of PacketList.

■ The socket for the multicast group or UDP unicast PNack port is broken/

closed. Multicast Sender exits after logging the error.

■ Memory allocation failure. Multicast Sender exits after logging the error.

Mul t i ca s t Rece i ve r

Multicast Receiver receives multicast data packets, stores them in an internal buffer,

reconstructs protocol frames and writes them to a Frame Store. Figure 31 shows

the context for Multicast Receiver. Multicast Receiver is exec ’d by Connection Orig-

inator and receives the connection information from its parent.
103

s y s t e m C D - 1 . 1

a r y 2 0 0 3

104

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Multicast Receiver reads configuration information from parameter files, opens a

socket for the multicast group and starts listening to multicast packets. It stores the

packets in an internal buffer. If any missing packets are detected, it constructs a

PNack packet and sends it to the Multicast Sender to request a retransmission of

the missing packets. When all the packets for a Frame have been received, the

Frame is reassembled and written to the Frame Store. Multicast Receiver maintains

a log of its activities.

FIGURE 31. MULTICAST RECEIVER CONTEXT

Process ing

Figure 32 shows the data and control flow for Multicast Receiver. Multicast Receiver

consists of five main objects:

■ MCastConsumer

■ PacketList

■ MCastFrame

■ CDS_Socket

■ CDS_Signal (not shown)

CDS_Socket is described in “CDS_Socket” on page 102.

parameter filesD1

Receiver
Multicast

1

log fileD2
Sender

Multicast

Frame StoreD3

Originator
Connection

data packets

PNack packets
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
FIGURE 32. MULTICAST RECEIVER DATA AND CONTROL FLOW

MCastConsumer

MCastConsumer is responsible for the following:

■ Initialization of the Multicast Sender application

■ Main processing loop

■ Shutdown of the application

MCastConsumer is the main processing object for Multicast Receiver. This object

controls the timing and execution of all the processing methods required to receive

and store multicast CD-1.1 frames. The processing initiated by this object is divided

into four areas:

■ Process initialization

■ Data input

Originator
Connection

Consumer
MCast

1

List
Packet

4

Sender
Multicast

parameter fileD1

Frame StoreD2

Socket
CDS_

2

Socket
CDS_

3

connection
information,

PNack packets

data packets

connection
information

PNack packets

Frame
MCast

6

connection
information

frames

data
packets

initialization

data packets
data packets

PNack packets
105

s y s t e m C D - 1 . 1

a r y 2 0 0 3

106

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
■ Packet assembly and storage

■ Obtain missing packets

MCastConsumer is started by Connection Originator after CD-1.1 connection pro-

cedures are complete. Once started, Connection Originator exits and Data Center

Manager monitors the status of MCastConsumer. If MCastConsumer exits, Data

Center Manager starts Connection Originator to reestablish the connection and per-

form a restart of MCastConsumer.

Process initialization occurs once at startup. This processing establishes two socket

connections, initializes and creates PacketList, opens the frame store for writing,

and sets up logging and configuration parameters used by the application. Once

this processing is successfully completed, MCastConsumer enters the main process-

ing loop. If initialization fails, MCastConsumer exits.

Data input encompasses the processing required to receive and store data packets

sent by a provider. Data packets are received via a UDP socket and stored in Pack-

etList where they are kept for further processing.

If data packets are not received, MCastConsumer asks the data provider to resend

missing packets by sending a PNack packet. PNack packets are created by Pack-

etList and are sent to the data provider via the UDP unicast socket. Formats for

data and PNack packets are specified in “Multicast Protocol” on page 135. Pack-

etList maintains the last time and the number of times a PNack packet was sent. If

a missing packet does not arrive, the missing packet is ignored along with other

packets that would have potentially been used to reassemble a frame.

MCastConsumer exits if the data provider cannot provide packets. This condition is

realized by one of two events. The first is receipt of an Alert Frame from the data

provider. The alert tells MCastConsumer that the data provider is exiting and allows

for a graceful shutdown. The second is a lack of input for a user-defined length of

time.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Packe tL i s t

PacketList performs packet management for both a data consumer and a data pro-

vider. For a data consumer, PacketList is responsible for the following:

■ Initializing the packet list

■ Storing and retrieving packets

■ Verification of packets

■ Providing a container of PNack packets to MCastConsumer

PacketList is charged with the management and storage of two primary data ele-

ments between the data provider and the data consumer, data packets and PNack

packets. Data packets are fragments of CD-1.1 frames. Each of the fragments con-

tain a header to assist the consumer in reassembling the packets into a complete

frame. For each packet a consumer is missing, a PNack packet is generated and

sent to MCastConsumer to be sent to the data provider.

Data packets are stored as they arrive from the data provider. After a configurable

amount of time, PacketList checks for missing packets among those previously

received and generates a PNack packet for the missing packets. PacketList incre-

ments the number of requests generated for each packet and the last time a

request was sent. This gives PacketList the ability to wait a sufficient amount of

time for a response from the data provider before a retry.

MCastF rame

MCastFrame is responsible for reassembling packets into CD-1.1 frames, verifying

frames, and storing frames in the Frame Store. MCastFrame is derived from the

CDS_Frame object. It augments the CDS_Frame functionality with methods to per-

form frame fragmentation, frame reassembly, and frame verification.

For a data consumer, MCastFrame is responsible for the following:

■ Reassembling protocol frames from packets

■ Verification of reassembled frames

■ Writing reassembled frames to the Frame Store
107

s y s t e m C D - 1 . 1

a r y 2 0 0 3

108

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
MCastFrame objects are instantiated by MCastConsumer when a new frame is to be

assembled. MCastFrame is provided the packets that make up the CD-1.1 frame.

The packets are stripped of the packet header and placed in contiguous memory.

The new reassembled frame is then verified via its included checksum. Once veri-

fied, the frame is written to the Frame Store using libfs and the object is destroyed.

Er ro r S ta tes

Erroneous configuration parameters are the most likely cause of Multicast Receiver

failure at initialization. The log files usually provide diagnostic information for this

type of failure (if Multicast Receiver’s logging component can be initialized before

the failure). The following error conditions may occur at startup:

■ The log directory specified in the configuration file does not exist or is

not writable by the program.

■ The Frame Store configuration file identified in the configuration file is

not complete and correct.

■ The frame sets used by Multicast Receiver (specified in the configuration

file) and their associated frame log files do not exist.

■ The socket for the multicast group or UDP unicast PNack port cannot be

opened.

After initialization is complete and the program enters steady state operation, all

anticipated error conditions are logged. The following error conditions may be

experienced:

■ Reassembled frame fails CRC check.

■ Frame is discarded due to missing packets.

■ The socket for the multicast group or UDP unicast PNack port is broken/

closed. Multicast Receiver exits after logging the error.

■ Memory allocation failure. Multicast Receiver exits after logging the error.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Miss ing F rame Detec to r

The purpose of the Missing Frame Detector is to evaluate a Frame Store frame set

for sequence number gaps. The context for Missing Frame Detector is presented in

Figure 33. Missing Frame Detector is started periodically by Data Center Manager. If

frames are missing from the sequence, Missing Frame Detector writes the list to a

file.

FIGURE 33. MISSING FRAME DETECTOR CONTEXT

Process ing

Figure 34 shows the data and control flow for Missing Frame Detector. Missing

Frame Detector consists of two processing components:

■ ListEval

■ FrameStoreObjects

parameter filesD1

Missing

1
missing sequence

D4

Frame StoreD3

Manager
Data Center

numbers

log filesD5

time stamp of
D2 last data frame Frame

Detector
109

s y s t e m C D - 1 . 1

a r y 2 0 0 3

110

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 34. MISSING FRAME DETECTOR DATA AND CONTROL FLOW

L i s tEva l

ListEval is the main subcomponent. ListEval coordinates initialization of the other

program components. After initialization, processing takes place to assess the

sequence number gaps in a configured frame set. When one or more gaps are dis-

covered, the process writes the missing sequences to an output file of a configured

name. Additionally, the time of the last Data Frame before the first gap is saved to

durable store. Completing this task, the process exits, providing a return code to

indicate that a missing sequence numbers file was or was not written.

Each time the process is invoked, the above processing is repeated with the follow-

ing exception. On subsequent invocations, the time of the last Data Frame before

the first gap of the immediately proceeding execution is retrieved. This time is used

as a search seed time for the subject frame set. In this way ListEval can avoid

unnecessarily searching portions of the frame set known to be free of sequence

number gaps, while still ensuring that an accurate representation of missing

sequence numbers for the frame set is captured in the output file.

parameter filesD1

Frame StoreD3

Manager
Data Center

missing sequence
D4 numbers

log filesD5

ListEval

1

FrameStore

2

Objects

log messalog
messages

log messagsequence
numbersconfiguration

log messaframeset
content

configuration

log messagsequence
numbers

log
messages

time stamp of
D2 last data frame

time stamp
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
ListEval interacts with FrameStoreObjects to invoke methods for accessing the

Frame Store.

FrameSto reOb jec t s

FrameStoreObjects is actually a group of processing objects for performing opera-

tions on the Frame Store. This group includes:

■ CDS FrameStore

■ CDS FrameSet

■ CDS Frame

Together these elements support the ability to open and close a Frame Store, open

and close a frame set, and request information about the contents of a frame set,

for example, query for the list of frames in a frame set. These processing objects

are common re-use objects in CDS CD-1.1. Their detailed description is not pro-

vided here.

I nput /P rocess ing /Output

Missing Frame Detector takes its input from the contents of a Frame Store frame

set. A frame set is polled for information about its content, in particular the list of

frames it contains. The frame list is then processed to determine where there are

gaps. A record is constructed for each sequence number gap and written to a file.

If multiple frame sets are evaluated by Missing Frame Detector, a separate output

file is produced for each frame set.

Missing Frame Detector logs messages to an ASCII text log file. The location and

name of this file are specified in the configuration file. Log messages note signifi-

cant processing events and capture error information. Each log entry specifies the

routine that logged the message along with the text of the message.
111

s y s t e m C D - 1 . 1

a r y 2 0 0 3

112

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Cont ro l

Missing Frame Detector may be started from the UNIX command line. In an opera-

tional environment, invocation will come from an external controlling process such

as Data Center Manager or UNIX cron. When Missing Frame Detector executes, it

performs its evaluation and exits. Execution should occur on a periodic basis so

that missing sequence number files reflect the current state of the Frame Store.

Reading the content of a frame set is a time consuming process. For this reason, a

balance must be struck between currency and timeliness of output files and utiliza-

tion of computational resources. That is, Missing Frame Detector should execute

frequently enough that gap lists reflect reasonably current conditions but not so

frequently that a constant list refresh results.

I n te r f aces

Missing Frame Detector has external interfaces to the Frame Store, the UNIX file

system, and to a startup control program. The interface to the Frame Store is

encapsulated in FrameStoreObjects. At the core of FrameStoreObjects is the libfs

which provides function call methods for performing operations. This interface

supports access to open and close a frame set and for polling and reading a frame

set’s content. Missing Frame Detector is passive with respect to Frame Store con-

tent. That is, the frame sets are read, but not written.

Both components of Missing Frame Detector log messages to a log file. The logging

library liblog, is at the core of message logging and the interface to the log file.

Internally, interfaces between Missing Frame Detector components are almost

entirely via function calls. In a few instances, data objects are visible between pro-

cessing objects (global). These items are placed in the header files of the defining

component and are kept to a minimum.

Er ro r S ta tes

Missing Frame Detector writes program execution and error information to a log

file. Most failures of Missing Frame Detector are from faulty configuration. The fol-

lowing must be configured prior to program execution:
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
■ The log directory specified in the configuration file exists and is writable

by the program.

■ The Frame Store configuration file identified in the configuration file is

complete and correct

■ All frame sets used by Missing Frame Detector (specified in the configura-

tion file) exist along with their associated frame log files and are

described in the Frame Store configuration file. If Missing Frame Detector

is configured to evaluate multiple frame sets and an error occurs access-

ing a frame set, the process attempts to continue to evaluate other frame

sets despite the error.

Data Pa r se r

Data Parser reads continuous time-series data as Data Frames from a Frame Store

and writes the enclosed channel data to the Data Management System. This data

reformatting operation results in time-series data being available through the Data

Management System for the automatic and interactive time-series processing

applications. The context of Data Parser is shown in Figure 35. This figure illustrates

that Data Parser provides the coupling between other components of the CDS CD-

1.1 and the automatic and interactive processing systems.

An ancillary purpose of Data Parser is to provide quality control of the continuous

data stream. In particular, because Data Parser examines the contents of the data

stream, it is a natural process to handle the data signature verification of Channel

Subframes, which confirms the authenticity of the data.
113

s y s t e m C D - 1 . 1

a r y 2 0 0 3

114

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 35. DATA PARSER CONTEXT

Figure 36 shows a detailed data flow within Data Parser. Data Parser has three prin-

cipal components:

■ DLParse Exec

■ Process Loop

■ Process Frame

RDBMS and files:D4
disk loop/data

Data Parser

1

Subsystem
Interactive

and
Automatic

Frame StoreD3

Data Management
System

Manager
Center
Data

a

d

parameter files log fileD2D1

Exchange
Frame

c

Receiver
Multicast

b

framesframes frames channel datachannel data
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
FIGURE 36. DATA PARSER DATA FLOW

DLPar se Exec

DLParse Exec is the entry point for the UNIX process that makes up the Data Parser.

Data Parser is intended to run unattended and indefinitely in the background. In a

typical operation it is monitored by a Data Center Manager process that restarts

Data Parser, as needed, in the event of a termination. DLParse Exec performs the

following processing:

disk loop
Db configuration

frame sets/
disk loops Exec

DLParse

1

Frame
Process

3

parameter filesD1

Loop
Process

2

key
D3 management

services
verification

libas

control

RDBMS & files:
Db disk loop/data

frame
handles

data
frames

parse/verify log

parse/verify
status

channel
key

frame/disk loop

channel
data

init

Channel Subframe

Manager
Center
Data

verify request,
verify result

frame store:
D2 files and frame logs

a

b

115

s y s t e m C D - 1 . 1

a r y 2 0 0 3

116

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
1. Read and parse command-line arguments. The command line is format-

ted using libpar syntax.

2. Initialize logging services. Logging services are provided by liblog. All

components use the logging services, which is omitted from the figure

for simplicity.

3. Initialize signal handling. Data Parser is usually terminated by receiving a

signal. Signal handling assures that shutdown is handled cleanly. All

transactions with the DBMS are completed, and all persistent states are

written to the file system.

4. Initialize the verification services. The input time-series data may be

signed at the sensor to verify its authenticity. Data Parser can be config-

ured to verify the data authenticity. This step sets up the verification ser-

vices provided by libas. Data Parser only verifies the signed sensor data

(that is the Channel Subframes). This operation is distinct from verifying

the signature on the frames. Data Parser does not check that the frame

signatures are valid.

5. Associate acquisition sites with frame sets. Each acquisition site is named

and consists of one or more channels. Time-series data for each channel

are managed in a disk loop. A disk loop is a collection of disk files logi-

cally ordered in a time-series loop. When new data arrive, the oldest data

are removed to make room for the newest data. Thus, every acquisition

site is associated with a collection of one or more disk loops. Similarly, a

frame set is a data collection consisting of all of the channel data from an

acquisition system (see “libfs” on page 128). Accordingly each input

frame set is associated with an acquisition site, and correspondingly, one

or more disk loops.

In addition to each input frame set, there are up to two output frame sets

for each acquisition site. These output frame sets do not contain any

frame data, but instead reference the input frame data. The purpose of

these frame sets is (1) to provide status logging regarding the success or

failure of the parsing process, and (2) to provide status logging regarding

the signature verification processing (if verification is desired).
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
6. Open the Frame Store and input/output frame sets. For each data pro-

vider site, this step initializes the Frame Store reading functions and veri-

fies that the input and output frame sets exist and are accessible. After

opening each frame set the last frame processed for each frame set is

read from a persistent file.

7. Open the RDBMS and read the disk loop configuration for the acquisi-

tion sites. For each acquisition site, query the database and extract all of

the relevant information about disk loops related to that acquisition site.

disk loops are preallocated and each channel must be configured for pro-

cessing. Channel configuration includes specifying how the channel data

are encoded and whether or not they are authenticated.

8. Pass each frame set/data provider site/disk loops association to Process

Loop. After DLParse Exec initial processing is completed Process Loop

takes over. No return from Process Loop is needed, and the process must

be terminated by sending it a signal.

Process Loop

Process Loop is essentially a loop over all input frame set/acquisition site pairs. Pro-

cess Loop performs the following processing steps during each loop:

1. Poll for newly arrived Data Frames. Polling is controlled by input parame-

ters and is intended to be relatively infrequent (about every 30 seconds

to a few minutes). The result is that for each frame set several frames are

available for processing after each polling cycle. The maximum number

of frames to be processed from a frame set in a polling cycle is also a

configurable parameter. In this way a single station, which may be send-

ing older data very quickly, cannot block other stations that are sending

recent, up-to-date data.

2. For each new frame encountered, read the frame data and invoke Pro-

cess Frame. The polling for new frames results in a collection of frame

handles that include references to the actual frames stored in the Frame

Store. For each frame handle Process Loop reads the frame data and

passes the data, along with the acquisition and diskloop information, to
117

s y s t e m C D - 1 . 1

a r y 2 0 0 3

118

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Process Frame. After processing each frame Process Frame returns to Pro-

cess Loop with an overall success/failure status indicator (via return

value). For each associated channel, an indicator of whether or not that

channel was (1) successfully parsed and (2) successfully verified is also

returned.

The status of parsing and verification are written to output frame sets

associated with each acquisition site. The parsing status output frame set

contains a reference to the input frame and the list of channels that were

successfully parsed. The verification status output frame set contains a

reference to the input frame and the list of channels that failed authenti-

cation. A channel may be successfully parsed, but fail authentication.

3. Periodically flush parsed channel and output frame set data. To reduce

the impact of Data Parser on system resources, especially the DBMS,

transactions to the DBMS are buffered. Each channel’s time-series data

are written to the file system as they are parsed, but inserting or updating

the corresponding DBMS (wfdisc) record is deferred. Typically, these

database records are flushed at least every 1–2 minutes. If a lot of data

are arriving rapidly, this interval is increased to keep the size of the data

buffers manageable.

Writing the output frame sets is coordinated with the output to the

DBMS. In this way, the output frame sets accurately reflect the data that

are successfully parsed, inserted into the DBMS, and made visible to the

other processing applications.

Associated with the flushing of the data, Process Loop writes state infor-

mation to nonvolatile disk file storage. The purpose of this operation is to

record the sequence number of the last record successfully parsed and

loaded into the DBMS. If Data Parser is terminated, it can be restarted

from its most recent, successful operation.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Process F rame

Process Frame processes the contents of a single Data Frame as provided by a

frame handle from Process Loop. It handles verification, frame decoding, and out-

put of the channel data to the file system. Upon entry Process Frame is provided

the frame handle and its associated data provider and disk loop information. Pro-

cess Frame performs the following processing steps:

1. Unpack the frame. On input a frame is a string of bytes and must be

unpacked to be interpreted. Unpacking services are provided through

libcdo.

2. Parse each channel in the frame. Each channel in the frame processing

involves (1) verifying the signature, (2) converting the data to its output

format, (3) writing the data to the corresponding disk loop file, and (4)

updating the corresponding wfdisc entry. If a channel fails conversion or

writing to the disk loop file it is logged, but processing continues unless

the frame itself is corrupt. If a channel fails verification the failure is

recorded for later logging.

I nput

Data Parser takes input from the following files and database objects:

■ Parameters and parameter files. Data Parser uses libpar to parse parame-

ters. The organization of parameters into parameter files is site specific

and discussed in [IDC6.5.18].

■ DBMS tables. The following DBMS tables are read: affiliation, dlfile,

instrument, site, sitechan, sensor, wfconv, wfdisc, and wfproto (a view on

sitechan, sensor, instrument, and wfconv).

■ Frame Store. Data Parser processes one or more input frame sets, which

contain Data Frames from which to extract the channel time-series data.
119

s y s t e m C D - 1 . 1

a r y 2 0 0 3

120

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
■ Last frame processed files. Data Parser records the last frame processed

into a small file for each data provider site. Upon process startup, it uses

this file to determine the sequence number of the next frame to be

parsed.

Output

Data Parser writes to the following files and DBMS objects:

■ DBMS tables wfdisc. Time-series data files are the files associated with the

wfdisc table (commonly called “.w” files), which hold the time-series

data.

■ Frame Store. For each input frame set, Data Parser writes up to two out-

put frame sets. One of these frame sets writes one log entry for the pars-

ing status of each input Data Frame. This output frame records the

channels that are successfully parsed as well as a reference to the original

input frame. The other of these frame sets writes one log entry for the

authentication status of each input Data Frame in which one or more

channels fail verification. This output frame records only the channels

that fail authentication. If all channels are successfully verified, then no

authentication status frame is written.

■ Last frame processed files. These files contain the sequence number of

the last successfully processed Data Frame.

■ Log files. Data Parser logs its status to log files using liblog.

Cont ro l

Data Parser is started by the Data Center Manager. It continues to run indefinitely

until it either encounters an error or receives a signal. At startup Data Parser closes

“standard” input and output streams and restricts status output to log files as writ-

ten by logging services (liblog). For debugging, Data Parser can be configured to

process a specific set of frames and stop.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
I n te r f aces

Data Parser exchanges data with the file system, the Frame Store, and the DBMS

through the following library interfaces:

■ Parameters and configuration data are exchanged through libpar.

■ Frame Store data are exchanged through libfs and libframelog.

■ Frames are interpreted through libcdo.

■ Access to the authentication data (public keys) is provided through libas

and OpenSSL.

■ DBMS data are exchanged through libgdi.

■ Time-series data are decoded using libwio.

■ Time-series (channel) data are written to the file system by functions spe-

cific to Data Parser.

■ Data Parser logs are managed through liblog.

■ The current state file is written to the file system by functions specific to

Data Parser.

Within Data Parser, acquisition site and frame set-related data are exchanged

through function calls. Configuration parameters that must be shared between

files are stored as globals.

Er ro r S ta tes

After Data Parser has successfully started it should continue to run indefinitely.

Most errors that cause it to fail are encountered immediately at startup and can be

diagnosed by examining the log files. The following is a partial list of startup failure

modes:

■ Improper configuration (parameter values), including missing parameter

values, which are noted in the log files.

■ The database is inaccessible or improperly specified.
121

s y s t e m C D - 1 . 1

a r y 2 0 0 3

122

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
■ Frame sets cannot be opened; invalid Frame Store configuration. If any

frame set cannot be opened Data Parser continues to process those frame

sets that can be opened. However, Data Parser terminates when it cannot

process any data provider sites.

■ Improper configuration of database tables. All channels to be parsed

must be configured in the DBMS. Configuration includes setting up data

decoding information and allocating disk loops. If any one channel for a

station is improperly configured, or if disk loop files are not allocated,

Data Parser does not process any data it finds from the offending chan-

nel. It continues, however, to process the other channels. The log file

indicates whenever an unknown channel is encountered in the Data

Frame, and configuration problems are detected by observing the log.

■ Authentication services cannot be initialized (only if authentication is

enabled). Some errors in the authentication configuration are detected

initially, and Data Parser exits immediately upon encountering them.

However, some errors are not detected by the authentication services

library until signatures are verified. A separate authentication log con-

tains errors specific to the authentication services. Normally this log is

empty, but if certificates are discovered to be missing they are logged

there.

■ If any channel fails parsing Data Parser ignores that channel and contin-

ues with the remaining channels in the frame.

If the database connection fails during operation Data Parser exits.

Frame S to re S tage r

The Frame Store Stager program is the interface between the CDS CD-1.1 and the

Archiving Subsystem. Frame Store Stager monitors active Frame Stores and moves

inactive Frame Store files into a staging area in the file system. This staging area is

where the Archiving Subsystem acquires Frame Store files. Once Frame Store Stager

has moved Frame Store files into the staging area, it writes the results of these
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Frame Store file manipulations to the DBMS to be used by the Archiving Sub-

system to determine which files to archive. Figure 37 shows the Frame Store Stager

context.

FIGURE 37. FRAME STORE STAGER CONTEXT

I nput /P rocess ing /Output

Input for environment initialization occurs when Frame Store Stager is started from

parameterized data in par files. These data include:

■ logging setup data

■ active frame set list

■ archiving interval

■ staging area directory

Frame Store Stager gets the current system time with libstdtime library functions. It

then compares the current time and the start time for each Frame Store file. When

a file start time is earlier than the current time minus the archiving interval, Frame

Store Stager moves the file to a staging area directory specified by the user. Frame

Store Stager repeats this process for each frame set in the frame set list. Frame Store

cron

Stager
Frame Store

1

Frame StoreD3

log fileD2

staging areaD4

fileproductDbparameter filesD1

clock
system

list of stage ready files
list of previously staged files
123

s y s t e m C D - 1 . 1

a r y 2 0 0 3

124

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Stager then notifies the Archiving Subsystem that these files are available for

archiving. This is accomplished using libfileproduct library functions to write file

data to the database. After the database update is complete, Frame Store Stager’s

processing is complete and the process terminates.

Figure 38 shows the data flow for Frame Store Stager processing and interface com-

ponents.

FIGURE 38. FRAME STORE STAGER DATA FLOW

Cont ro l

Frame Store Stager is started with the UNIX utility cron based on an interval speci-

fied by the user. Using cron, Frame Store Stager runs automatically at specified

intervals without user interaction. Frame Store Stager may also be executed manu-

ally from the UNIX command line at any interval deemed appropriate.

staged file list,
purge lists

staging areaD4

parameter filesD1

to/from
Read/write

DBMS

2

Check files

3

Move files

4
clock

system

Frame StoreD3

execute

fileproductDb

late file list
parameterized

data

current
time

purge obsolete files, get staged/late file lists/requests

time window active frame setsstaged/late
files

list of stage ready files Frame Store
file names

file
name

file

Initialize

1

 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Once the program is started, configuration data determines how Frame Store

Stager processes Frame Store files. This data controls where data are moved and

which Frame Store files are available for archiving.

I n te r f aces

Frame Store Stager is the interface between the CDS CD-1.1 and the Archive Sub-

system. This interface is indirect and utilizes the database and a predetermined

UNIX file system directory as the interface medium. Frame Store Stager performs its

processing on each of the specified frame sets, moving candidate files to the stag-

ing directory. It then generates a fileproduct record for each file and stores these in

the DBMS. Frame Store Stager then updates its local databases. These updates are

used by Frame Store Stager to determine if a file was previously staged, requiring an

alteration of a file name. When the archiver runs, it uses the fileproduct records to

find and archive staged files.

The interface to Frame Store is through UNIX system calls and calls to libfs. Actual

manipulation (movement) of the Frame Store files does not require libfs, but any

data extraction (last write time, volumes, and so forth) uses libfs functions. In this

way, Frame Store Stager does not require any knowledge of the Frame Store file

structure or the Frame Store itself.

Frame Store Stager has an interface to user defined par files containing the required

parameter definitions. libpar library functions are used to access par files.

An interface to log files is used by Frame Store Stager to log significant processing

events and error conditions. Library functions of liblog are used to create, manage,

and write messages to these log files.

Er ro r S ta tes

Because Frame Store Stager uses the UNIX file system to move and process Frame

Store files, it is most likely to fail when creating, moving, or deleting Frame Store

files. The most probable cause of such a failure is improper file or directory permis-

sions. If proper permissions do not exist, Frame Store Stager fails to create staging

or logging directories, to open existing directories, or to manipulate Frame Store
125

s y s t e m C D - 1 . 1

a r y 2 0 0 3

126

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
files. In the event of such a failure, Frame Store Stager generates an error message

and exits. For each fatal error, an error message is created using both syslog and

liblog. These messages give the point of failure and the error code (if any) for the

failure.

Frame Store Stager can also fail if it cannot establish a connection to the database.

This error also generates error messages from both liblog and syslog. Because the

database connection is essential, Frame Store Stager has no other recourse but to

exit.

Pro toco l Checke r

The purpose of Protocol Checker is to verify that frames in a given frame set are

formatted in accordance with the CD-1.1 protocol. The application retrieves Data

Frames from a frame set specified by the user and checks data elements in the

frame to ensure that they are within the limits specified by the CD-1.1 protocol.

This is useful during application development as an indicator of the software’s abil-

ity to generate and store Data Frames or as a debugging tool if problems arise in

the field. Protocol Checker is a stand-alone application and can be run on either an

active or an inactive frame set. Figure 39 shows the context of Protocol Checker.

Figure 39. Protocol Checker Context

parameter fileD1

Checker
Protocol log fileD2

Frame StoreD3

user
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
I nput /P rocess ing /Output

Protocol Checker requires a number of inputs to function correctly. These inputs are

provided to Protocol Checker as either command-line arguments or par file ele-

ments. Input parameters identify the configuration of the Frame Store, the frame

set of interest, and other parameters that specify how Protocol Checker executes.

Another par file is used to input initial values for logging messages to log files.

These values include the log filename, log file location, number of log files, log

threshold, and the priority of each of the log classes supported.

After the processing parameters are established, Protocol Checker uses libfs to

extract Data Frames from the frame set. Protocol Checker then uses libcdo routines

to check the frame for adherence to the CD-1.1 protocol.

Output from the process is generated as each part of the frame is checked. Mes-

sages indicating the value of frame data elements and whether or not the data are

within prescribed limits, are generated using liblog routines. Messages describing

frames are produced in ASCII and are logged to a log file for review by the opera-

tor.

Cont ro l

Protocol Checker is started by using the command line. The user specifies the exe-

cutable name followed by the required input parameters. The application reads the

parametric data to determine which frame set to parse and which Data Frames to

parse. By default, Protocol Checker is nonterminating, meaning it runs forever

unless the terminate flag is set to true or the program receives a SIGTERM (Ctrl-C)

from the user.

I n te r f aces

Protocol Checker has two major interfaces. The first interface is between Protocol

Checker and a frame set. For this interface, Protocol Checker uses routines provided

by libfs. These routines are responsible for opening the frame set, retrieving desired

frames, and closing the frame set.
127

s y s t e m C D - 1 . 1

a r y 2 0 0 3

128

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The second interface is between Protocol Checker and the files where the results of

the verification are stored. Protocol Checker uses routines provided by liblog for this

interface. These routines create log files, write results to log files, and close log

files.

Er ro r S ta tes

Protocol Checker can only function based on input from the user. Because of this,

the most common error state is one that arises from improper user input. These

errors occur when the user specifies a nonexistent frame set or a nonexistent par

file. In both cases, the program prints an error string to stderr and exits normally.

This error state is avoided by input of the correct data.

l i b f s

CDS CD-1.1 processes access the Frame Store via the Frame Store library libfs. The

Frame Store satisfies all the high-level requirements that pertain to the storage and

retrieval of CD-1.1 frames. The Frame Store and the libfs relationship to it are

described in the following paragraphs.

The Frame Store provides durable storage for CD-1.1 frames. The Frame Store is a

dynamic entity: it accepts new CD-1.1 frames for storage, retrieves requested

frames, and deletes the oldest frames (after optional archiving). The Frame Store is

comprised of the Frame Store files (extension .fs) and Index files (extension

.flog). Index files allow efficient retrieval by insert time, which is the most com-

mon type of retrieval. The Frame Store files have the following properties:

■ they have unique names

■ they are dynamically allocated

■ they append new CD-1.1 frames

■ they retain data signatures

■ they store non-data CD-1.1 frame types

■ they are self-describing

■ they are archive-ready without further processing
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
The Frame Store is described to libfs by a parameter file that uses the par table fea-

ture provided by libpar. The parameter file is shared by all CDS CD-1.1 applications

that access the Frame Store. The parameter file assigns each frame set a unique

name and identifier, and assigns other attributes such as the directory for the

Frame Store files and the size of each file (both in time duration and expected

number of bytes).

The Frame Store is subdivided by frame sets. A frame set is a collection of frames

from the single data provider or creator. Examples of frame sets are seismic and

other monitoring arrays, individual channels of time-series data, and participants

capable of creating command and control frames. In the latter case, an NDC that

issues command and control frames is considered the creator of those frames, and

the command and control frames are assigned to their own frame set.

The libfs library presents the Frame Store to applications as a file system object.

The library interface includes access functions to open, close, read, write, and

search the Frame Store. The library reads and parses the Frame Store parameter file

when the open function is called. The Frame Store open function returns a handle

to the application; subsequent calls to the library provide this handle as an argu-

ment. The Frame Store close function releases all resources allocated for the Frame

Store. Between open and close functions the calling application may access any of

the libfs functions. All library functions are transactional; this feature allows simul-

taneous access to the Frame Store by several processes.

I nput /P rocess ing /Output

The inputs to libfs are as follows:

■ Frame Store parameter file (See the frameStore(5) man page for a

description.)

■ Frame Store files (.fs) (These disk files contain intact CD-1.1 frames.

See “Interfaces” on page 60.)

■ Index files (.flog) (These disk files contain an index into the Frame

Store files. See “Interfaces” on page 60.)
129

s y s t e m C D - 1 . 1

a r y 2 0 0 3

130

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
■ calling arguments supplied by the applications (See the libfs(3) man page

for arguments.)

■ host system time (The library obtains current time values from the host

system.)

Processing of libfs follows a procedural-based library model: the control flow

remains with the calling application, and each libfs function executes to completion

and returns to the caller. Other than potential disk I/O waits, the functions are

non-blocking and return to the caller as soon as they are finished.

libfs provides the caller with read and write modes of operation. In the read mode

libfs provides functions to search the Frame Store on different attributes of frames

and a function to retrieve a frame from the Frame Store. The Frame Store allows

searching for frames based on the station sequence number (SSN), the data time

of the frame, or the insert time (in this Frame Store) of the frame. A typical read

application interacts with libfs using the following model:

1. Open the Frame Store.

2. Open the frame sets of interest.

3. Determine the time of the last Frame Store poll (by external means).

4. Poll for frame handles of frames arriving since this last poll time; update

the poll time.

5. Using the frame handles, read the frames from the Frame Store.

6. Provide application processing of these frames.

7. Repeat steps 4–6 until the termination condition is met.

8. Close the frame sets.

9. Close the Frame Store.

A typical write-mode application interacts with libfs using the following model:

1. Open the Frame Store.

2. Open the frame sets of interest.

3. Create or receive by external means a new CD-1.1 frame.

4. Request a frame handle from libfs.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
5. Store the frame using the frame handle.

6. Repeat steps 3–5 until the termination condition is met.

7. Close the frame sets.

8. Close the Frame Store.

libfs produces the following outputs:

■ A return value for each function call. (See the libfs(3) man page for

return values and error codes.)

■ The error string, if set.

■ Frame Store files (.fs) if operating in the mode of a Frame Store writer.

■ Index files (.flog) if operating in the mode of a Frame Store writer.

Cont ro l

libfs is a statically linked library. Because libfs consists only of procedural functions,

the library does not impose any control flow dependencies upon the calling appli-

cation.

I n te r f aces

libfs manages the following two types of files. All access to the files is via libfs.

■ Frame Store files (.fs)

Frame Store files are created by libfs as needed and contain CD-1.1

frames for a data time interval. Multiple files cover consecutive time

intervals. When reading or writing a Data Frame, libfs uses the data time

to determine the file containing the frame. Within a file the frames are

unordered, hence the inclusion of a table of contents in each file. The

Frame Store files are self contained: the table of contents lists the frame

set name, time interval, number and identity of frames within, and so

forth. These files may be archived without the need for an external

index. The Frame Store typically contains many .fs files for each frame

set.
131

s y s t e m C D - 1 . 1

a r y 2 0 0 3

132

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Each Frame Store file is comprised of a table of contents followed by CD-

1.1 frames. Incoming CD-1.1 frames are appended to the file until the

initial table of contents is filled. At that point, another table of contents

section is appended to the end, and the CD-1.1 frames may again be

appended after this auxiliary table of contents.

Frame Store files are named epoch.fs , where epoch is an integer value

returned by the UNIX time(2) call, for example, 972775800.fs . libfs

generates the names when a new file is required.

■ Index files (.flog)

Index files are preallocated during installation and contain references to

CD-1.1 frames in Frame Store files. Index files provide rapid and efficient

access to the Frame Store for recently stored frames. For each frame

stored in a Frame Store file libfs creates a frame audit entry. These entries

are ordered by insertion time. The Frame Store reading application polls

this index file to discover recent additions to The Frame Store. The Frame

Store contains one index file for each frame set.

Each index file is comprised of a header followed by frame audit entries.

An audit entry contains the frame type, insertion time, data time, and

several other parameters describing the frame. The audit entries occupy a

circular buffer within the file; this permits new entries to overwrite old

entries. After the audit entry is purged; access to those frames is still

available by direct interrogation of the Frame Store files (via the table of

contents).

Index files have names chosen via the configuration par-table. By con-

vention, index files are named for the frame set, plus the frame log

extension .flog , for example UKR.flog .

An additional file interface to libfs is the Frame Store configuration parameter file.

This file is created and maintained outside of libfs. The library reads this file during

the Frame Store open function to obtain configuration information. This informa-

tion includes directory names, index filenames, file sizes, and so forth.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Er ro r S ta tes

The library returns error codes when errors are discovered during processing. Some

error codes have error messages associated with them; the library provides another

function to return the error messages. The library returns an error code as soon as

an error is discovered. When an error is discovered, any resources allocated during

that function call are released prior to return.

Because libfs is dependent on file system objects, the most common form of error

is a missing or incomplete file (either the .fs or .flog files). Other common

errors are configuration errors in the configuration file. In the former case, it may

be possible for the application to proceed by ignoring the intended processing for

that frame. In the latter case access to the Frame Store is unavailable to the appli-

cation, and the most prudent course of action for the application is to log the prob-

lem and terminate.

l i b cdo

libcdo encapsulates processing for creating and extracting information from mes-

sages/frames of the CD-1.1 protocol. The library contains processes that create

frame data structures. Frame data structures, or frames, are used in IPC between

processes adhering to the CD-1.1 protocol. Frames are intended as “containers”

for the transport of self-describing information across a network. libcdo is used by

applications whose functionality requires the creation or interpretation of the CD-

1.1 frames. These applications provide libcdo frame building routines with the data

elements, which are included in the frame. The frame building routines order the

data based on the CD-1.1 protocol. Because these applications can be on

machines of different architectures (big endian versus little endian), libcdo contains

functions to convert frames from their host byte order (HBO) to network byte

order (NBO) before transport.
133

s y s t e m C D - 1 . 1

a r y 2 0 0 3

134

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Another function of libcdo is to extract data from frames. libcdo routines extract

information from frames to allow user applications to identify frame routing infor-

mation, subchannel information, signature authentication, and frame component

sizes. As with the frame creation routines, the data extraction routines handle the

conversion from NBO back to HBO.

Finally, libcdo routines are used for communication verification. For each frame

created, a checksum is generated and attached to the frame. This is used by the

receiving application to verify that the frame was transmitted without errors. The

receiving application uses a libcdo routine to validate the checksum and verify that

the frame was transmitted with no errors.

I nput /P rocess ing /Output

libcdo is a procedural-based library. Control flow remains with the calling applica-

tion. libcdo routines execute to completion then return to the caller. For this rea-

son, the majority of inputs to libcdo are calling arguments to the various routines

supplied by calling applications. An exception to this rule is signature authentica-

tion. Even though the actual signature authentication is handled by another library,

processing of the signature can be enabled/disabled by setting a flag.

Several inputs to calling applications indirectly affect libcdo and are parametric

inputs to the calling application; they control the amount of data that libcdo out-

puts to log files. Inputs include libcdo-specific log classes and the priority of each of

these classes.

Cont ro l

Control of libcdo is entirely contained within the calling application. libcdo is active

only during the execution of one of its exported functions.

A calling application interfaces with libcdo through function calls. Data created by

these functions are made available to the calling applications through pointers to

data structures or by the return value of the functions.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Er ro r S ta tes

Because libcdo is controlled by the calling application there are limited libcdo error

states. The two most probable failures are invalid input data and memory alloca-

tion. In both cases the actions taken by libcdo are identical. For each failure libcdo

logs an error message to the log file (provided that libcdo logging is enabled). After

the logging is complete, the function returns and provides an error code to the call-

ing application. The decision about how to proceed is left to the calling application.

MULT ICAST PROTOCOL

Data Packe t Fo rmat

Table 4 shows the format of a multicast data packet. The data packet contains the

frame set name, frame set number, frame sequence number, frame length, data

packet number, frame fragment number, total fragments in the frame, and the

frame fragment. The fragment number identifies which packet this is out of the

total fragments in the frame (e.g. 1 out of 6). The total packet size is configurable

but must be less than the smallest Maximum Transmission Unit (MTU) used by the

transport network.

TABLE 4: FORMAT OF DATA PACKET

Field Format Description

frame set name 20-byte ASCII name of the frame set

frame sequence num-
ber

IEEE integer 4 least significant bytes of the frame
sequence number assigned by the frame
creator

frame length IEEE integer length of the frame

packet number IEEE integer data packet number assigned by the packet
creator

fragment number IEEE short frame fragment number

total fragments IEEE short total number of fragments in the frame

frame fragment variable frame fragment
135

s y s t e m C D - 1 . 1

a r y 2 0 0 3

136

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
PNack Packe t Fo rmat

Table 5 shows the format of a PNack packet. It contains the frame set name, the

number of resend requests in the PNack packet, and a list of missing packet num-

bers. The number of data packet resend requests in a single PNack packet is limited

to 100.

DATABASE DESCR IPT ION

The CDS CD-1.1 depends on the database while establishing a connection for

transmitting CD-1.1 frames and as the repository for data converted to CSS 3.0

format. These two uses are distinct and need not be concurrent. The first use is

transient; after a connection is established the database is not needed for the

remainder of the frame transmission session. The second use is continuous for a

data center that needs rapid access to CSS 3.0 format data.

Database In te r face

All CDS CD-1.1 interaction with the database is through the generic database inter-

face library, libgdi. libgdi is a dynamically loadable library that provides a simplified

programmatic interface to the database.

TABLE 5: FORMAT OF PNACK PACKET

Field Format Description

frameset name 20-byte ASCII name of the frame set

number of requests IEEE integer number of data packet resend requests

packet number 1 IEEE integer number of first data packet to resend

packet number 2 IEEE integer number of second data packet to resend

...

packet number n IEEE integer number of nth data packet to resend
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Database Des i gn

The entity-relationship model of the schema used by CDS CD-1.1 is shown in Fig-

ure 40. CDS CD-1.1 uses the alphasite and dlman tables for establishing connec-

tions. The alphasite table contains the names and addresses (IP) of valid data

providers and is first checked when a connection attempt is made from a sending

site. By using database row locking, the CDS CD-1.1 prevents multiple concurrent

connection attempts from the same data provider. The dlman table is consulted to

route the incoming connection to the desired host machine and server process.

The CDS CD-1.1 also uses the database for storing unpacked data segments in the

CSS 3.0 data format. The CDS CD-1.1 uses the affiliation, instrument, sensor, site,

sitechan, and wfconv tables to read configuration information, and the dlfile and

wfdisc tables to write descriptions of the new data. The input tables are read as

needed. Several of the input tables are accessed through a view named wfproto.

The wfproto view links to columns from the tables instrument, site, sitechan, and

wfconv. The output table dlfile describes a disk loop file. A disk loop file may con-

tain one or more segments of data, each segment of data is represented by a

wfdisc record.
137

s y s t e m C D - 1 . 1

a r y 2 0 0 3

138

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 40. CDS CD-1.1 TABLE RELATIONSHIPS

CDS CD-1.1 use of the database tables is listed in Table 6. For each table, the third

column shows the purpose for reading or writing each attribute.

site

sta
ondate

affiliation

net
sta

sitechan

sta
chan

ondate
chanid

sensor

sta
chan
time

endtime
inid

chanid

instrument

inid

sta/ondate

sta

sta/chan

sta/chan/time-

inid

sta/chan/jdate-

sta/chan/time&endtime

sta/chan/ondate

wfdisc

sta
chan
time
wfid

chanid

channame

extern_sta
extern_chan

intern_sta
intern_chan

intern_chanid
chanid-

sta/chan-
intern_sta/intern_chan

intern_chanid

chanid

alphasite

sta
address

dlid

dlman

dlid

dlfile

dir
dfile
dfid

chanid
dlid

wfconv

sta
chan

chanid
dlid

chaniddlid
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
TABLE 6: DETAILED DATABASE USAGE BY CDS CD-1.1

Table Action Usage of Attribute

affiliation reads

reads

•net for record identification

•sta for identifying auxiliary network or station elements
for creating station intervals

alphasite reads

reads

•address for verifying the connection address

•prefdlid for selecting the connection host ID

dlfile writes

writes

reads/writes

writes

writes

reads/writes

reads/writes

reads/writes

reads/writes

write

•dir for identifying disk loop directory

•dfile for identifying disk loop file

•machine for identifying (data parsing) execution host

•dfid for specifying the numeric identifier of disk loop files

•full and archive for identifying status

•time for identifying time of wfdisc record creation

•reaptime for identifying time of Data Parser termination

•sta for identifying provider station

•chan and chanid for identifying channel

•dlid for identifying writing Data Parser

dlman reads

reads

reads/writes

•dlid for identifying connection host (correlates with
prefdlid in alphasite table)

•machine for identifying host computer

•running signifies if data parsing is executing on specified
host

instrument reads

reads

reads

reads

•inid for specifying the numeric identifier of instrument

•instype for identifying instrument type

•ncalib for specifying the calibration value for instrument

•ncapler for specifying the calibration period value

site reads

reads

reads

•sta and ondate for record identification

•statype to distinguish between 3-C and array seismic sta-
tion types

•site record for location library
139

s y s t e m C D - 1 . 1

a r y 2 0 0 3

140

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
sitechan reads

reads

•sta for identifying data provider

•chan for identifying sensor channel

wfconv reads

reads

reads

reads

reads

reads

reads

reads

reads

•sta for identifying data provider

•chan for identifying sensor channel

•chanid for specifying the numeric identifier of sensor
channel

•inauth for identifying authentication of input

•incomp for identifying use of data compression

•intype for identifying input data type

•insamp for specifying input sample rate

•outtype for specifying output data type

•outsamp for specifying output samp rate (must currently
equal input samp rate)

wfdisc writes

writes

writes

writes

writes

writes

writes

writes

writes

writes

writes

writes

writes

writes

writes

writes

writes

•sta for identifying data provider

•chan for identifying sensor channel

•time for specifying start time of data

•wfid for identifying record number

•chanid for specifying the numeric identifier of sensor

•jdate for specifying data of data

•endtime for specifying end time of data

•nsamp for specifying the number of data samples in
record

•samprate for specifying data sample rate

•calib for identifying calibration value

•calper for identifying current calibration period value

•instype for specifying instrument/sensor type

•segtype for specifying segment type (currently a constant
assignment, “o”)

•datatype for identifying output data type

•dir for identifying disk loop directory

•dfile for identifying disk loop file

•foff for specifying data offset into disk loop file

TABLE 6: DETAILED DATABASE USAGE BY CDS CD-1.1 (CONTINUED)

Table Action Usage of Attribute
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 4: Requ i rements

This chapter describes the requirements of CDS CD-1.1 and includes the following

topics:

■ Introduction

■ Functional Requirements

■ System Requirements

■ Requirements Traceability
s y s t e m C D - 1 . 1

a r y 2 0 0 3 141

S o f t w a r e
I D C D O C U M E N T A T I O N

142
Chapter 4: Requ i rements

INTRODUCT ION

The requirements of CDS CD-1.1 can be categorized as general, functional, or sys-

tem requirements. General requirements are nonfunctional aspects of CDS CD-1.1.

These requirements express goals, design objectives, and similar constraints that

are qualitative properties of the software. The degree to which these requirements

are actually met can only be judged qualitatively. Functional requirements describe

what CDS CD-1.1 is to do and how it is to do it. System requirements pertain to

general constraints, such as compatibility with other IDC subsystems, use of recog-

nized standards for formats and protocols, and incorporation of standard subpro-

gram libraries.

FUNCT IONAL REQUIREMENTS

The requirements described in this section are categorized by function.

Connec t ion Manage r Requ i rements

Connection Manager establishes validated connections between protocol peers.

Connection Manager maintains the addressing information and connection policy

of CDS CD-1.1. In traditional unicast and unicast catchup operation, after the con-

nections are established, Frame Exchange communicates over the established pri-

vate link without any further assistance from Connection Manager. In multicast

operation, at a station data provider, delivery of data is performed by Multicast

Sender on separate multicast connections. Multicast Sender makes no use of the

private link established by Connection Manager.

Connection Manager has the following requirements:
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
1. Connection Manager shall support connection establishment protocol

defined in [IDC3.4.3Rev0.2].

2. Connection Manager shall accept Connection Response Frame frames on

a well-known port.

3. Connection Manager shall verify the authenticity of the requester, includ-

ing the number of active connections for this requester and not respond

to invalid requests.

4. Connection Manager shall invoke a Frame Exchange to service valid con-

nections.

5. Connection Manager shall maintain connection status in a database table.

6. Connection Manager shall be highly available (inetd or daemon with

monitors).

7. Upon boot Connection Manager shall be input driven.

8. Connection Manager shall have the ability to distribute Frame Exchange

instances on the LAN.

Data Cente r Manage r Requ i rements

Data Center Manager provides control processing for other CDS CD-1.1 processing

entities that are to execute at a data center. This process control is provided for

those processes that require monitoring and stimulation/instantiation from within

the data center. This is in contrast to other processes that are instantiated by stim-

ulation from outside of the data center. An example of an externally stimulated

process is the process that services inbound data from an IMS station. An example

of an internally instantiated process is Data Parser. Data Center Manager instantiates

child processes at a data center. The child processes are monitored by Data Center

Manager to detect exit conditions and configured output. When a child process

exits, Data Center Manager has the capability to react to the condition via rules

defined explicitly for the child. Reaction can include restarting the same process,

starting a different process, or a null reaction. If a child process provides configured

output to Data Center Manager, the manager has the ability to treat the output as a

command, write the output to a log file, or ignore the output.
143

s y s t e m C D - 1 . 1

a r y 2 0 0 3

144

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
Data Center Manager has the following requirements:

9. Data Center Manager shall provide the ability to spawn and monitor CDS

CD-1.1 processes on a host processor.

10. At a minimum managed processes shall include:

– Exchange Controller/Frame Exchange pair

– Data Parser

11. Data Center Manager shall provide the ability to restart managed pro-

cesses in the event of a graceful or ungraceful termination.

12. Data Center Manager shall monitor the output of managed processes for

error conditions. Monitoring may result in the sending of email, process

termination, or the issuing of a signal to managed processes.

13. Data Center Manager shall provide the ability to receive commands to ini-

tiate the execution or termination of a managed process.

Connec t ion Or i g ina to r
Requ i rements

Connection Originator provides a connection agent for processing suites, which are

providers of CD-1.1 protocol data. It is also responsible for establishing an IP con-

nection and providing CD-1.1 protocol transactions that result in an agreement for

the exchange of protocol frames. Connection Originator’s frame traffic is limited to

that required for establishing a communications link. After the link is established,

any frame may be sent across the link, though most generally the link is used for

time-series Data Frames.

In traditional unicast and unicast catchup operation, Connection Originator exec ’s

an Exchange Controller after a communication path is established. Exchange Con-

troller inherits data descriptors for the communication link and provides the pro-

cessing for further exchanges of protocol frames.

In multicast operation, Connection Originator exec ’s a Multicast Receiver. Multicast

Receiver inherits the IP address and port number of the multicast group and the

PNack IP address and port number.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
Connection Originator has the following requirements:

14. Connection Originator shall accept run-time configuration parameters to

specify:

– connection destination

– time-out values

– protocol designations

15. UDP and TCP connections shall be supported by Connection Originator.

16. Connection Originator shall allow retries when a connection request fails.

17. Successful and unsuccessful connections shall be logged.

18. The sequence and definition of connection frames shall be as docu-

mented in [IDC3.4.3Rev0.2].

19. Simultaneous execution of multiple Connection Originators shall be possi-

ble for connections to multiple destinations.

20. Connection Originator shall provide communication link information to

an Exchange Controller when a successful connection has occurred.

Exchange Cont ro l l e r Requ i rements

Exchange Controller implements the policy of how to act upon protocol frames in

traditional unicast and unicast catchup operation. Exchange Controller performs

simple distribution and prioritization based on frame source and frame type for

both inbound and outbound frames. Exchange Controller encapsulates the ordering

policy for outbound frames and provides notifications for inbound/received

frames.

Exchange Controller has the following requirements:

21. Exchange Controller shall control one and only one Frame Exchange.

22. Upon boot Exchange Controller shall prioritize and submit all unacknowl-

edged Data Frames in the Frame Store to Frame Exchange.

23. Exchange Controller shall in coordination with Frame Exchange, maintain a

Frame Log to provide a history of each frame handled.
145

s y s t e m C D - 1 . 1

a r y 2 0 0 3

146

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
24. Exchange Controller shall poll the Frame Store for the presence of new

frames.

25. Exchange Controller shall order Data Frames and submit a notification to

Frame Exchange.

26. Exchange Controller shall accept a frame message from Frame Exchange

for communicating frame and processing status.

27. Exchange Controller shall provide a frame message to Frame Exchange to

communicate frame and processing actions.

28. Exchange Controller shall notify CDS CD-1.1 processes about the presence

of newly received frames including Command Request Frames.

Frame Exchange Requ i rements

Frame Exchange’s primary function is to reliably transport frames from one Frame

Store to another. Each Frame Exchange has a single associated Exchange Controller,

which directs the operation of Frame Exchange using frame messages sent over a

pipe. Each Frame Exchange is connected by a TCP/IP socket to a corresponding

Frame Exchange at another node to which it sends and from which it receives

frames.

Frame Exchange has the following requirements:

29. Frame Exchange shall maintain a priority-ordered queue of the handles of

frames to be sent.

30. Frame Exchange shall send the highest priority frame in its queue to the

corresponding Frame Exchange on its attached socket and repeat.

31. Frame Exchange shall receive messages from its Exchange Controller

directing it to add new frame handles to its queue.

32. Frame Exchange shall receive and periodically generate and send AckNack

Frames to the corresponding Frame Exchange on its socket.

33. The AckNack Frame shall indicate which frames are available or needed

in the referenced frame set.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
34. Frame Exchange shall receive frames over its attached socket from its cor-

responding Frame Exchange.

35. The reception of an AckNack Frame shall cause the sending of a frame

message to the associated Exchange Controller describing any frames that

have been newly acknowledged.

36. Any frames that have been sent, but not acknowledged via the AckNack

message, shall be queued for resending.

37. All frames other than AckNack Frames shall be stored in the appropriate

frame set (denoted by the Creator/Destination of the frame). Exchange

Controller associated with Frame Exchange will be notified by a frame

message of the reception of the new frame.

38. Frame Exchange shall determine that a time-out has occurred if no mes-

sages are received within a time-out interval set by a configuration

parameter.

39. In the event of a time-out the associated Exchange Controller shall be

notified by a frame message.

Data Pa r se r Requ i rements

Data Parser converts CD-1.1 protocol time-series data to a format used for signal

processing and analysis software at a data center. Data Parser polls the frame sets

for newly arrived Data Frames, which are parsed to extract station, channel, dura-

tion, data time, and compression information. Time series data are converted to

the CSS 3.0 format and written to disk files in disk loop structures. Placement of

data in disk loops is influenced by the size of the data and the represented time (of

the data). Data Parser places data in disk loops in chronological order, even when

the data’s arrival has occurred out of (time) order. Information about the converted

time series data is provided to a DBMS. The DBMS information allows other pro-

cesses to acquire information about the signal data that are available for process-

ing.

Data Parser has the following requirements:

40. Data Parser shall process CDS CD-1.1 Data Frames.
147

s y s t e m C D - 1 . 1

a r y 2 0 0 3

148

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
41. Data Parser shall obtain CDS CD-1.1 Data Frames from the Frame Store.

42. Data Parser shall recognize duplicate input frames and process only one

copy of the duplicate frame.

43. Data Parser shall recognize overlapping input frames and process the

first-to-arrive frame. Overlap refers to both time and channel.

44. Data Parser shall uncompress data compressed according to a valid CDS

CD-1.1 compression algorithm(s).

45. Data Parser shall log parse failures and indicate the cause of the failure.

46. Data Parser shall filter input channels based on authentication status.

47. Data Parser shall use the existing DBMS and disk loop structure for stor-

ing time-series data.

48. The following pertains to data storage in disk loops:

– Data shall be stored in chronological order.

– Data shall not be moved after written to a disk loop.

– DBMS data references shall be updated within N seconds of the data

being written to the disk loops, where N is configurable.

49. Data Parser shall preserve sample timing of time-series data to within

1/sample-rate seconds.

50. Data Parser shall process up to a maximum of 100 channels allocated

among up to 25 stations.

51. Data Parser shall support processing at 3x real-time for the maximum

channel configuration.

Frame S to re S tage r Requ i rements

The Frame Store Stager provides an interface between the CDS CD-1.1 and the

Archiving Subsystem. Using this interface enables archiving of the Frame Store

durable store on offline storage media.

The following are the requirements for the Frame Store Stager:
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
52. Frame Store Stager shall provide an interface between the CDS CD-1.1

and the Archiving Subsystem.

53. Frame Store Stager shall be a stand-alone application that can process the

Frame Store files while not interfering with current active Frame Store

transactions.

54. Frame Store Stager shall maintain the integrity of the Frame Store files.

55. Frame Store Stager shall only process Frame Store files from active frame

sets.

56. At a minimum, the following parameters shall be user-defined at

runtime:

– active Frame Set list

– archiving time window (earliest and latest times)

– archiving directory

57. Frame Store Stager shall log errors encountered during processing.

Authent i ca t ion S i gn ing
Requ i rements

Authentication Signing provides the capability to apply DSA to CD-1.1 frames. Each

frame as well as Channel Subframe in the CD-1.1 protocol contains authentication

data fields. When a frame is created, the creator may issue a request to this entity

to set and fill authentication data fields for carrying the digital signature of the cre-

ator. The Authentication Signing capability supports the specification of a key iden-

tifier used in the generation of the signature. Given the key ID and the frame to be

signed, the frame signature field is filled and authentication data values are set to

represent the presence and size of authentication data. The application of an

authentication signature does not result in the encryption of the frame’s content.

The content is “out in the open”; only the signature is encrypted. Authentication

Signing supports the application of signatures to all variants of protocol frames.

When a Data Frame is submitted for signing, one signature is applied to the entire

frame; separate signatures for the Channel Subframes are not applied. Each Chan-

nel Subframe to receive a signature must be addressed independently.
149

s y s t e m C D - 1 . 1

a r y 2 0 0 3

150

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
Authentication Signing has the following requirements:

58. Authentication Signing shall provide the ability to digitally sign protocol

frames according to the description in [IDC3.4.3Rev0.2].

59. Information describing applied digital signatures shall be provided in the

protocol frame including the following:

– signature present/not-present

– length of signature (in 8-bit bytes)

60. Authentication Signing shall provide the ability to digitally sign Channel

Subframes according to the description in [IDC3.4.3Rev0.2].

61. Authentication Signing shall allow for the identification of a signature key

to be used for signing a given frame or subframe, where each key identi-

fies a separate signature.

62. Authentication Signing shall provide the ability to support a minimum of

10 signature keys.

63. The design of Authentication Signing shall not preclude the use of a hard-

ware solution for providing digital signatures.

64. An error detected in signing a frame shall be communicated to the

requesting software.

65. If Authentication Signing is unable to provide a signature, the provided

(valid) frame or subframe shall be returned to the requester.

S igna tu re Authent i ca t ion
Requ i rements

Signature Authentication supports verifying the authenticity of CD-1.1 frames. Each

frame in the CD-1.1 protocol may contain a digital signature in the frame trailer. In

addition, Channel Subframes support application of a signature. Signature Authen-

tication provides the processing to validate digital signatures, where these signa-

tures are evaluated within the context of the accompanying frame or subframe.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
Signature Authentication has the following requirements:

66. Signature Authentication shall authenticate CD-1.1 frames according to

the definition of frames in [IDC3.4.3Rev0.2].

67. Channel Subframes containing signatures according to the definition in

[IDC3.4.3Rev0.2] shall be authenticated.

68. The results of frame and Channel Subframe authentication shall be made

available for further processing.

69. When a signature fails authentication the containing frame or Channel

Subframe shall be unaltered.

70. Signature Authentication shall support the ability to access a minimum of

10 authentication keys.

71. The execution of Signature Authentication shall be controllable via the

run-time configuration.

Frame S to re Requ i rements

The Frame Store is a data sink that houses both CD-1.1 protocol frames and an

index to the frames. The Frame Store is transactional with respect to writes; the

conclusion of a write operation guarantees that the frame is saved on disk and is

accessible. The Frame Store stays within a preallocated disk capacity and recycles

the space allocated to the oldest frames to make room for new frames. The Frame

Store allows multiple processes to simultaneously retrieve frames from the store.

The Frame Store is implemented as a set of time-bin disk files with a library inter-

face to manage the files. The library that implements the Frame Store is called libfs.

The Frame Store has the following requirements:

72. libfs shall provide transactional frame processing such that an unambigu-

ous and accurate result is provided for a request to store a frame.

73. libfs shall support the ability to provide requested frames in the exact

form in which they were submitted.

74. libfs shall support storage of all types of CD-1.1 frames.
151

s y s t e m C D - 1 . 1

a r y 2 0 0 3

152

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
75. libfs shall support insertion of frames into the Frame Store with time val-

ues between the temporal minimum time value and the present.

76. libfs shall provide querying of frames by frame source and data time,

entry time, or unique frame ID (frame set/sequence number).

77. Random access for the frames within the Frame Store shall be provided

through libfs, such that any given frame (currently in the store) can be

retrieved.

78. Access to the Frame Store by libfs shall support multiple non-blocking

reads of the Frame Store.

79. libfs shall provide status/result response information to Frame Store

requests.

80. Frame Store storage management shall provide capacity for at least

seven days of Data Frames from each data source.

81. The Frame Store shall be self maintaining with respect to the maximum

amount of data stored, such that space used by expired frames is recap-

tured.

82. libfs shall provide a means to initialize and configure the Frame Store

under program control.

83. libfs shall support an interface that allows archiving of the Frame Store.

This interface can also provide controls to record when Frame Store data

are ready for archiving.

l i b cdo Requ i rements

libcdo is a library for creating and extracting frames in the format described in

[IDC3.4.3Rev0.2]. When creating frames libcdo can align bytes as required by the

specification and swap bytes as required for network transport. When extracting

frames the library provides a set of data structures and function calls, which allow

access to the data contained in the protocol frames.

libcdo has the following requirements:
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
84. libcdo shall comply with [IDC3.4.3Rev0.2] for the basis of frame con-

struction and deconstruction.

85. libcdo shall provide facilities for the creation of frames in NBO for trans-

port.

86. libcdo shall provide facilities for converting received frames into data

structures in HBO.

SYSTEM REQUIREMENTS

The CD-1.1 protocol is the next generation of the protocol used to transport

time-series data from IMS stations to the IDC and NDCs. The CD-1.1 protocol is

an enhancement of CD-1.0. The requirements for CDS CD-1.1 evolved from the

requirements of the CD-1.0 protocol. The following list identifies new system

(high-level) requirements of the CDS in support of the CD-1.1 protocol.

87. CDS components using CD-1.1 protocol shall comply with

[IDC3.4.3Rev0.2].

88. CDS shall support automated connections between CDS components

communicating via CD-1.1 protocol (providers and consumers of data).

89. Audit capability shall be provided such that history of a given frame can

be discovered.

90. CDS CD-1.1 software shall provide time-series data in CSS 3.0 format.

91. A Frame Store shall be used to support transport and recovery of frames.

92. Frames stored in a Frame Store shall be retrievable as an exact replica of

the originally stored frame.

93. The structure of a Frame Store shall permit archiving and restoration, and

the ability to extract frames from a restored Frame Store.

94. The protocol Frame Store shall provide a durable store for frames.

95. Protocol frames between two CDS protocol participants shall be deliv-

ered with a reliability of no less than 99.9 percent averaged over a period

of five days.
153

s y s t e m C D - 1 . 1

a r y 2 0 0 3

154

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
95a. The CDS shall deliver and parse 99.99 percent (Goal: 100.00 percent) of

data that are available at a data provider into the data repository of a

data consumer under nominal conditions (assuming no hardware failures

at data provider or consumer).

95b. The CDS shall deliver and parse data into disk loops and the Oracle data-

base at the data consumer within 3 minutes of the time the data are first

available at the data provider during nominal conditions (assuming no

communication outages or hardware failures at data provider or con-

sumer).

95c. The CDS shall deliver and parse 99.9 percent of data that are available at

a data provider into the data repository of a data consumer for data con-

sumer outages caused by infrastructure failures of less than 4 days.

95d. The CDS shall deliver and parse 99.9 percent of data that are available at

a data provider into the data repository of a data consumer for data pro-

vider outages caused by infrastructure failures of less than 4 days.

95e. The CDS shall deliver and parse data into disk loops and the Oracle data-

base within a time no greater than 110% of (outage duration / excess

bandwidth capacity).

95f. The CDS shall automatically attempt to initiate a connection between the

data provider and data consumer within 5 minutes after recovery from

an outage caused by an infrastructure failure.

95g. The CDS shall automatically resume service within 5 minutes after recov-

ery from an outage caused by an infrastructure failure. Resumption of

service includes processing connection requests, exchanging CD-1.1

frames, and putting data into the data repository.

96. Delivery of CD-1.1 Data Frames shall coexist with CD-1.0 protocol data.

97. CDS shall support automated forwarding of CD-1.1 protocol frames

from the IDC.

98. The design of CDS shall allow potential use of UDP multicast for data

distribution.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
99. A priority policy for transmitting protocol frames shall be provided by

CDS. Policy is established by the data provider and includes at least FIFO

and LIFO ordering policies.

100. A software component suite shall be assembled that supports the con-

struction of a System capable of participating in a CD-1.1 protocol net-

work, as either a data provider or data center.

101. CDS shall perform authentication processing on frames containing

authentication signatures and shall store the results.

102. The CDS shall provide multicasting capability to deliver CD-1.1 frames

using underlying IP router multicast capability.

Mul t i ca s t Subsys tem Requ i rements

M-1. Multiple data providers shall be capable of providing multicast data over

the transport network.

M-2. Multicasting shall support all IMS stations in the Treaty (up to 321 sta-

tions) in multicasting data over a common transport network.

M-3. Transmission rates for multicast data shall be configurable to mitigate

network congestion.

M-4. A multicast data provider shall support 20 data consumers in a single

multicast group.

M-5. A multicast data provider shall not be limited in its sending by the

absence or presence of any specific multicast data consumer.

M-6. Multicasting shall support increases and decreases in the size of the mul-

ticast group without the need to restart the sending activity of the data

provider.

M-7. The size of multicast data packets shall be configurable to support the

smallest MTU (Maximum Transmission Unit) used by the transport net-

work.
155

s y s t e m C D - 1 . 1

a r y 2 0 0 3

156

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
M-8. A method for identifying, requesting, and resending missing multicast

data packets of an active multicast session shall be provided, limited by

configurable data buffer size.

M-9. A multicast data provider shall transmit frames in the order in which they

were written to its CD-1.1 frame set, with the exception of retransmis-

sions.

M-10. A multicast data provider shall begin delivery at the current time or a

configurable lookback time less than 10 minutes prior to the current time

to prevent multicast stream gaps over short data provider outages.

M-11. A multicast data consumer shall be capable of entering or leaving a mul-

ticast group without negatively impacting other group members.

M-12. Multicasting shall require less bandwidth on the data-provider communi-

cation link to service four multicast data consumers than required by

CD-1.1 point-to-point communications from a data provider directly to

two point-to-point data consumers.

M-13. A multicast group shall correspond to one and only one frame set.

Un icas t Ca t chup Subsys tem
Requ i rements

C-1. The CDS shall use sequence numbers to detect frames not received by a

data consumer via multicasting.

C-2. The CDS shall attempt to deliver to a data consumer frames not received

via multicasting.

REQUIREMENTS TRACEABIL ITY

The following tables trace CDS CD-1.1 requirements to components and describe

how the requirements are fulfilled.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
TABLE 7: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
CONNECTION MANAGER

Requirement How Fulfilled

1 Connection Manager shall support
connection establishment protocol
defined in [IDC3.4.3Rev0.2].

Connection Manager expects and pro-
cesses a sequence of frames as defined
in [IDC3.4.3Rev0.2].

2 Connection Manager shall accept
Connection Response Frame frames
on a well-known port.

Connection Manager monitors a con-
figured port for Connection Response
Frame input.

3 Connection Manager shall verify the
authenticity of the requester, includ-
ing the number of active connections
for this requester and not respond to
invalid requests.

Connection Manager verifies all con-
nection requests.

4 Connection Manager shall invoke a
Frame Exchange to service valid con-
nections.

Connection Manager starts an
Exchange Controller/Frame Exchange
pair for a traditional unicast or unicast
catchup validated connection.

5 Connection Manager shall maintain
connection status in a database table.

Connection Manager monitors uni-
cast connection status but does not
maintain it. This requirement was con-
sidered unnecessary in this implemen-
tation.

6 Connection Manager shall be highly
available (inetd or daemon with mon-
itors).

Connection Manager is configurable
to be started by the Internet daemon
process inetd.

7 Upon boot Connection Manager shall
be input driven.

Connection Manager processes a
Connection Response Frame received
as input from a connection requesting
source.

8 Connection Manager shall have the
ability to distribute Frame Exchange
instances on the LAN.

Connection Manager contacts a con-
figured Connection Manager Server
process via a socket connection. Con-
nection Manager Server processes
may exist on a variety of computers on
the LAN.
157

s y s t e m C D - 1 . 1

a r y 2 0 0 3

158

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N

TABLE 8: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:

DATA CENTER MANAGER

Requirement How Fulfilled

9 Data Center Manager shall provide
the ability to spawn and monitor CDS
CD-1.1 processes on a host processor.

Data Center Manager is configured
with a par file that allows the specifi-
cation of processes/jobs to start and
monitor. Data Center Manager spawns
the configured process and waits for
their termination.

10 At a minimum managed processes
shall include:

– Exchange Controller/Frame
Exchange pair

– Data Parser

Managed processes are specified in
the configuration par file.

11 Data Center Manager shall provide
the ability to restart managed pro-
cesses in the event of a graceful or
ungraceful termination.

A signal is received by Data Center
Manager when a spawned process ter-
minates. Based on configuration val-
ues, the terminated process may be
restarted/spawned.

12 Data Center Manager shall monitor
the output of managed processes for
error conditions. Monitoring may
result in the sending of email, process
termination, or the issuing of a signal
to managed processes.

Data Center Manager reads the UNIX
standard output stream of started pro-
cesses and can be configured to act on
particular output.

13 Data Center Manager shall provide
the ability to receive commands to
initiate the execution or termination
of a managed process.

Data Center Manager can receive
input from the standard output stream
of started processes. It can also accept
connections to a configured socket
port. Inputs from these sources may
result in activation or termination of
processes.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements

TABLE 9: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:

CONNECTION ORIGINATOR

Requirement How Fulfilled

14 Connection Originator shall accept
run-time configuration parameters to
specify:

– connection destination
– time-out values
– protocol designations

Run-time parameters are accepted via
the libpar par file mechanism.

15 UDP and TCP connections shall be
supported by Connection Originator.

TCP is completely supported. UDP
may be identified by a configuration
parameter, but is not fully supported.

16 Connection Originator shall allow
retries when a connection request
fails.

Connection Originator may be con-
figured to retry a connection after a
failed attempt.

17 Successful and unsuccessful connec-
tions shall be logged.

Connection Originator logs connec-
tion processing results to its log file.

18 The sequence and definition of con-
nection frames shall be as docu-
mented in [IDC3.4.3Rev0.2].

Connection Originator issues and pro-
cesses frames for establishing a con-
nection in accordance with
[IDC3.4.3Rev0.2].

19 Simultaneous execution of multiple
Connection Originators shall be pos-
sible for connections to multiple des-
tinations.

Each Connection Originator instance
executes independently from any
other instance.

20 Connection Originator shall provide
communication link information to an
Exchange Controller when a success-
ful connection has occurred.

In traditional unicast and unicast
catchup operation, Connection Origi-
nator provides a protocol peer open
socket file descriptor to the spawned
Exchange Controller.
159

s y s t e m C D - 1 . 1

a r y 2 0 0 3

160

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE 10: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
EXCHANGE CONTROLLER

Requirement How Fulfilled

21 Exchange Controller shall control one
and only one Frame Exchange.

Exchange Controller spawns and
interacts with a single Frame Exchange
process.

22 Upon boot Exchange Controller shall
prioritize and submit all unacknowl-
edged Data Frames in the Frame
Store to Frame Exchange.

In unicast operation, Exchange Con-
troller scans its log of unacknowl-
edged frames at startup and issues a
request to Frame Exchange to resend
unacknowledged frames.

23 Exchange Controller shall in coordi-
nation with Frame Exchange, main-
tain a Frame Log to provide a history
of each frame handled.

Exchange Controller writes to a frame
log to identify those frames queued to
Frame Exchange for sending.

24 Exchange Controller shall poll the
Frame Store for the presence of new
frames.

In unicast operation, Exchange Con-
troller detects new frames to be sent
by polling the Frame Store.

25 Exchange Controller shall order Data
Frames and submit a notification to
Frame Exchange.

Exchange Controller assigns a priority
value to frames to be sent based on
configuration values and summits
them to Frame Exchange.

26 Exchange Controller shall accept a
frame message from Frame Exchange
for communicating frame and pro-
cessing status.

Exchange Controller monitors its open
communication pipe to Frame
Exchange. When a frame message
providing an acknowledgement is
received, Exchange Controller updates
its transaction log.

27 Exchange Controller shall provide a
frame message to Frame Exchange to
communicate frame and processing
actions.

Exchange Controller provides a frame
message through its communication
pipe to Frame Exchange to request
frames be sent and to communicate
other control actions as necessary.

28 Exchange Controller shall notify CDS
CD-1.1 processes about the presence
of newly received frames including
Command Request Frames.

Exchange Controller recognizes the
receipt of different frame types.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
TABLE 11: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
FRAME EXCHANGE

Requirement How Fulfilled

29 Frame Exchange shall maintain a pri-
ority-ordered queue of the handles of
frames to be sent.

Frame Exchange maintains a sending
queue for frames to be sent. Frames
from Exchange Controller are ordered
in the queue according to their
assigned priority.

30 Frame Exchange shall send the high-
est priority frame in its queue to the
corresponding Frame Exchange on its
attached socket and repeat.

Frame Exchange sends the highest pri-
ority frame from its send queue(s)
first.

31 Frame Exchange shall receive mes-
sages from its Exchange Controller
directing it to add new frame handles
to its queue.

Frame Exchange polls the Exchange
Controller for input. Input can identify
new frames to be sent.

32 Frame Exchange shall receive and
periodically generate and send Ack-
Nack Frames to the corresponding
Frame Exchange on its socket.

Frame Exchange periodically produces
AckNack Frames according to the
run-time configuration.

33 The AckNack Frame shall indicate
which frames are available or needed
in the referenced frame set.

Frame Exchange interprets the Ack-
Nack Frame to identify gaps in
sequence numbers. Each gap repre-
sents one or more frames that must be
sent.

34 Frame Exchange shall receive frames
over its attached socket from its cor-
responding Frame Exchange.

Frame Exchange reads from an open
socket file descriptor connected to a
peer Frame Exchange. Input received
on this socket is interpreted as CD-1.1
frames.

35 The reception of an AckNack Frame
shall cause the sending of a frame
message to the associated Exchange
Controller describing any frames that
have been newly acknowledged.

Frame Exchange queues frame mes-
sages to Exchange Controller for each
frame that is acknowledged. Frame
messages are sent over the open pipe
to Exchange Controller.
161

s y s t e m C D - 1 . 1

a r y 2 0 0 3

162

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
36 Any frames that have been sent, but
not acknowledged via the AckNack
message, shall be queued for resend-
ing.

Frame Exchange maintains a list of
those frames sent but not yet
acknowledged. After a configurable
time-out period, unacknowledged
frames are resent.

37 All frames other than AckNack
Frames shall be stored in the appro-
priate frame set (denoted by the Cre-
ator/Destination of the frame).
Exchange Controller associated with
Frame Exchange will be notified by a
frame message of the reception of
the new frame.

With the exception of the AckNack
Frame, Frame Exchange writes all
frames received from its peer Frame
Exchange to the appropriate frame set
in the Frame Store.

38 Frame Exchange shall determine that
a time-out has occurred if no mes-
sages are received within a time-out
interval set by a configuration param-
eter.

A time-out counter increments for
each Heartbeat interval in which no
AckNack message is received and
resets to zero at the arrival of an Ack-
Nack. If the time-out counter reaches
its configured maximum, a time-out
condition is declared.

39 In the event of a time-out the associ-
ated Exchange Controller shall be
notified by a frame message.

Frame Exchange provides a time-out
frame message to Exchange Control-
ler whenever a time-out condition is
declared.

TABLE 11: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
FRAME EXCHANGE (CONTINUED)

Requirement How Fulfilled
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
TABLE 12: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
DATA PARSER

Requirement How Fulfilled

40 Data Parser shall process CDS
CD-1.1 Data Frames.

Data Parser parses CD-1.1 Data
Frames. Nonconforming frames are
discarded.

41 Data Parser shall obtain CDS CD-1.1
Data Frames from the Frame Store.

Data Parser polls the Frame Store for
new frames to be parsed and retrieves
those frames.

42 Data Parser shall recognize duplicate
input frames and process only one
copy of the duplicate frame.

Data Parser recognizes duplicate input
frames based on sequence number
and discards duplicate frames.

43 Data Parser shall recognize overlap-
ping input frames and process the
first-to-arrive frame. Overlap refers to
both time and channel.

Data Parser uses the database to
record parsed data, which enables
detection of overlapping input frames.
If this requirement is not met, data are
written for the last processed frame.

44 Data Parser shall uncompress data
compressed according to a valid CDS
CD-1.1 compression algorithm(s).

Data Parser supports decompression
of data compressed with the Canadian
Compression algorithm.

45 Data Parser shall log parse failures
and indicate the cause of the failure.

Data Parser logs failed Channel Sub-
frame processing information to a log
file.

46 Data Parser shall filter input channels
based on authentication status.

Data Parser filters input based on con-
figuration parameters and the avail-
ability and validity of data, not on
authentication status. This require-
ment was not considered to be correct
as stated.

47 Data Parser shall use the existing
DBMS and disk loop structure for
storing time-series data.

Data Parser writes parsed data in CSS
3.0 format and constructs wfdisc
records for the written data.
163

s y s t e m C D - 1 . 1

a r y 2 0 0 3

164

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
48 The following pertains to data stor-
age in disk loops:

– Data shall be stored in chronologi-
cal order.

– Data shall not be moved after writ-
ten to a disk loop.

– DBMS data references shall be
updated within N seconds of the
data being written to the disk
loops, where N is configurable.

Data Parser writes data to disk loops
and wfdisc records in an ordered,
deterministic method.

49 Data Parser shall preserve sample
timing of time-series data to within
1/sample-rate seconds.

Data Parser preserves sample time
received in Channel Subframes.

50 Data Parser shall process up to a
maximum of 100 channels allocated
among up to 25 stations.

Data Parser processing is configured
with par file parameters that can
accommodate identification of 100
channels and 25 stations.

51 Data Parser shall support processing
at 3x real-time for the maximum
channel configuration.

Parsing of data by Data Parser is an
efficient operation and taken singly
satisfies this requirement. However,
data parsing also includes authentica-
tion of Channel Subframes, which is
computationally expensive. This
requirement may or may not be satis-
fied based on the hardware of the host
platform when authentication is con-
sidered.

TABLE 12: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
DATA PARSER (CONTINUED)

Requirement How Fulfilled
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
TABLE 13: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
FRAME STORE STAGER

Requirement How Fulfilled

52 Frame Store Stager shall provide an
interface between the CDS CD-1.1
and the Archiving Subsystem.

Frame Store Stager interfaces with the
Frame Store via the UNIX file system,
and with the Archiving Subsystem by
using Archiving’s interface methodol-
ogy of fileproduct records in the
DBMS.

53 Frame Store Stager shall be a
stand-alone application that can pro-
cess the Frame Store files while not
interfering with current active Frame
Store transactions.

Frame Store Stager is constructed as a
stand-alone executable. It retrieves
data from the Frame Store using
non-blocking read-only access.

54 Frame Store Stager shall maintain the
integrity of the Frame Store files.

Frame Store files are moved from the
Frame Store to a staging area.

Frame Store Stager maintains a list of
previously moved Frame Store files to
ensure that late arriving data do not
cause the original Frame Store file to
be overwritten.

55 Frame Store Stager shall only process
Frame Store files from active frame
sets.

Configuration data are provided to
Frame Store Stager to identify frame
sets to be archived. Further, Frame
Store Stager only archives files that are
updated during the archive window as
specified via configuration parame-
ters.

56 At a minimum, the following parame-
ters shall be user-defined at runtime:

– active Frame Set list

– archiving time window (earliest
and latest times)

– archiving directory

Frame Store Stager uses libpar to read
configuration parameters for frame
sets, archiving time window, and stag-
ing directory(ies).

57 Frame Store Stager shall log errors
encountered during processing.

Frame Store Stager logs all significant
processing events and error conditions
using the liblog library.
165

s y s t e m C D - 1 . 1

a r y 2 0 0 3

166

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE 14: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
AUTHENTICATION SIGNING

Requirement How Fulfilled

58 Authentication Signing shall provide
the ability to digitally sign protocol
frames according to the description in
[IDC3.4.3Rev0.2].

Digital signatures are applied to cre-
ated frames according to definitions in
[IDC3.4.3Rev0.2].

59 Information describing digital signa-
tures shall be provided in the protocol
frame including the following:

– signature present/not-present

– length of signature (in 8-bit bytes)

Signed frames have authentication
fields in the protocol frame filled in
with descriptive data.

60 Authentication Signing shall provide
the ability to digitally sign Channel
Subframes according to the descrip-
tion in [IDC3.4.3Rev0.2].

Digital signatures are applied using
libcdo and libas to create Channel
Subframes according to the definitions
in [IDC3.4.3Rev0.2]. However, Chan-
nel Subframes are not signed in the
data center configuration of CDS
CD-1.1.

61 Authentication Signing shall allow for
the identification of a signature key to
be used for signing a given frame or
subframe, where each key identifies a
separate signature.

Configuration parameters are used by
application software to identify the
signature key to use in signing created
frames.

62 Authentication Signing shall provide
the ability to support a minimum of
10 signature keys.

An index file is used to provide a data-
base of signature keys available to a
signing application and supports an
arbitrary number of signature keys.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
63 The design of Authentication Signing
shall not preclude the use of a hard-
ware solution for providing digital sig-
natures.

The design of libas allows enhance-
ment to use an API to a hardware
signing solution.

64 An error detected in signing a frame
shall be communicated to the
requesting software.

Return data from signing software
provides a success or failure result sta-
tus.

65 If Authentication Signing is unable to
provide a signature, the provided
(valid) frame or subframe shall be
returned to the requester.

libas returns an unaltered frame to the
requester if it is not able to apply a sig-
nature.

TABLE 15: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
SIGNATURE AUTHENTICATION

Requirement How Fulfilled

66 Signature Authentication shall
authenticate CD-1.1 frames accord-
ing to the definition of frames in
[IDC3.4.3Rev0.2].

Processes that receive/process frames
request authentication through the
API of libas. Digital signatures are
authenticated according to definitions
in [IDC3.4.3Rev0.2].

67 Channel Subframes containing signa-
tures according to the definition in
[IDC3.4.3Rev0.2] shall be authenti-
cated.

Data Parser examines Channel Sub-
frames as they are being parsed and
requests authentication processing
when signed.

68 The results of frame and Channel
Subframe authentication shall be
made available for further processing.

Success or failure of authentication
signatures is written to frame logs.

TABLE 14: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
AUTHENTICATION SIGNING (CONTINUED)

Requirement How Fulfilled
167

s y s t e m C D - 1 . 1

a r y 2 0 0 3

168

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N

69 When a signature fails authentication
the containing frame or Channel Sub-
frame shall be unaltered.

Authentication processing is only con-
cerned with the validity of a digital sig-
nature. If a signature does not
validate, that result is returned to the
requester. The frame or Channel Sub-
frame is unaltered by the determina-
tion.

70 Signature Authentication shall sup-
port the ability to access a minimum
of 10 authentication keys.

An index file is used to provide a data-
base of an arbitrary number of signa-
ture keys available to a verifying
application.

71 The execution of Signature Authenti-
cation shall be controllable via the
run-time configuration.

A run-time configuration parameter is
provided to the libas library to enable
or disable verification processing.

TABLE 16: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
FRAME STORE

Requirement How Fulfilled

72 libfs shall provide transactional frame
processing such that an unambiguous
and accurate result is provided for a
request to store a frame.

The logic of libfs methods is structured
so that I/O for frames occurs before
the update of “table of contents” type
structures. Indices reflect actual store
contents. Additionally, store opera-
tions are atomic from the perspective
of the calling program.

73 libfs shall support the ability to pro-
vide requested frames in the exact
form in which they were submitted.

libfs supports search and retrieval of
stored frames. Retrieved frames are
exact images of stored frames.
Searches are made by sequence num-
ber, data time, or log time.

74 libfs shall support storage of all types
of CD-1.1 frames.

Any CD-1.1 frame type may be sub-
mitted for storage by libfs methods.

TABLE 15: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
SIGNATURE AUTHENTICATION (CONTINUED)

Requirement How Fulfilled
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
75 libfs shall support insertion of frames
into the Frame Store with time values
between the temporal minimum time
value and the present.

libfs stores frames in files that relate to
a Frame Store time bin. A Data Frame
is not stored only if its time is before
the time range of “time now corner”
and “time now corner” minus the
duration of the Frame Store.

76 libfs shall provide querying of frames
by frame source and data time, entry
time, or unique frame ID (frame set/
sequence number).

libfs allows searches by sequence
number, data time, or log time within
a given frame set. Frame sets repre-
sent specification of source.

77 Random access for the frames within
the Frame Store shall be provided
through libfs, such that any given
frame (currently in the store) can be
retrieved.

libfs uses libframelog to manage indi-
ces into the Frame Store files. Frame
logs provide information that enables
random access to frames in the Frame
Store.

78 Access to the Frame Store by libfs
shall support multiple non-blocking
reads of the Frame Store.

Read-only access to the Frame Store is
not restricted by the logic of libfs.

79 libfs shall provide status/result
response information to Frame Store
requests.

libfs methods provide a return value
indicating the success or failure of
requested operations. When a failure
is reported most methods also provide
an error number that can be used to
retrieve additional information about
the failure.

80 The Frame Store storage manage-
ment shall provide capacity for at
least seven days of Data Frames from
each data source.

The Frame Store capacity is provided
with configuration parameters. Pro-
cessing can easily support a seven day
duration. Available disk space is the
limiting factor.

TABLE 16: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
FRAME STORE (CONTINUED)

Requirement How Fulfilled
169

s y s t e m C D - 1 . 1

a r y 2 0 0 3

170

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
81 The Frame Store shall be self main-
taining with respect to the maximum
amount of data stored, such that
space used by expired frames is
recaptured.

libfs maintains its own data files to
eliminate/delete old files when the
configured maximum duration is
exceeded as new ones are created.

82 libfs shall provide a means to initialize
and configure the Frame Store under
program control.

libfs supports providing control in an
open request to create needed files if
they do not already exist. Creations
are based on the definitions in the
Frame Store par file.

83 libfs shall support an interface that
allows archiving of the Frame Store.
This interface can also provide con-
trols to record when the Frame Store
data are ready for archiving.

Frame Store files can be archived as
any other data file. Because files are
self describing, the information
required to use the archived file is cap-
tured simultaneously.

TABLE 17: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
LIBCDO REQUIREMENTS

Requirement How Fulfilled

84 libcdo shall comply with
[IDC3.4.3Rev0.2] for the basis of
frame construction and deconstruc-
tion.

libcdo has data definition structures
that capture the format of each
CD-1.1 frame. These structures are
used to create and decompose frames
in compliance with the formats and
protocol specification.

85 libcdo shall provide facilities for the
creation of frames in NBO for trans-
port.

Frames created with methods from
libcdo are provided to the requester in
NBO.

86 libcdo shall provide facilities for con-
verting received frames into data
structures in HBO.

Frames submitted to libcdo for
decomposition are expected to be in
NBO. The result of decomposition is
data structures in HBO.

TABLE 16: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
FRAME STORE (CONTINUED)

Requirement How Fulfilled
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
TABLE 18: TRACEABILITY OF SYSTEM REQUIREMENTS

Requirement How Fulfilled

87 CDS components using CD-1.1 pro-
tocol shall comply with
[IDC3.4.3Rev0.2].

All components of the CDS CD-1.1
comply with descriptions provided in
[IDC3.4.3Rev0.2].

88 The CDS shall support automated
connections between CDS compo-
nents communicating via CD-1.1 pro-
tocol (providers and consumers of
data).

The designs of Connection Manager
and Connection Originator enable
automated connection processing
between protocol peers.

89 Audit capability shall be provided
such that history of a given frame can
be discovered.

CDS CD-1.1 components use the
Frame Store as a data store for frames.
The Frame Store supports the discov-
ery of a frame’s history as it progresses
through the system.

90 CDS CD-1.1 software shall provide
time-series data in CSS 3.0 format.

CDS CD-1.1 components deliver
CD-1.1 Data Frames containing
time-series data. Time-series data are
parsed from Data Frames into CSS 3.0
format by Data Parser.

91 A Frame Store shall be used to sup-
port transport and recovery of
frames.

The Frame Store is used as a data store
for frames. Frames to be sent are
deposited and retrieved from a Frame
Store. Frames received are deposited
in a Frame Store.

92 Frames stored in a Frame Store shall
be retrievable as an exact replica of
the originally stored frame.

The Frame Store library, libfs, used by
CDS CD-1.1 applications supports
search and retrieval of stored frames.
Retrieved frames are exact images of
stored frames. Searches are made by
sequence number, data time, or log
time.

93 The structure of the Frame Store shall
permit archiving and restoration, and
the ability to extract frames from a
restored Frame Store.

The Frame Store is composed of
self-describing files that are available
for archiving. When a Frame Store
file(s) is restored, the self-describing
attribute of the file(s) enables
retrieval/extraction of archived
frames.
171

s y s t e m C D - 1 . 1

a r y 2 0 0 3

172

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
94 The protocol Frame Store shall pro-
vide a durable store for frames.

Frame store files are written to disk
files.

95 Protocol frames between two CDS
protocol participants shall be deliv-
ered with a reliability of no less than
99.9 percent averaged over a period
of 5 days.

This requirement is fulfilled by the
design of all of the CDS CD-1.1 appli-
cation software and the interactions
between them, in particular:

Data Center Manager monitors and
restarts processes

Connection Manager prevents multi-
ple connections by a single site

Connection Manager Server distrib-
utes connection servicing to multiple
hosts on the data center LAN

Exchange Controller requests resends
of frames not acknowledged in a pre-
vious execution

Frame Exchange resends frames until
an acknowledgement is received

Frame Store provides a durable store
for frames sent and received

95a The CDS shall deliver and parse 99.99
percent (Goal: 100.00 percent) of
data that are available at a data pro-
vider into the data repository of a
data consumer under nominal condi-
tions (assuming no hardware failures
at data provider or consumer).

95b The CDS shall deliver and parse data
into disk loops and the Oracle data-
base at the data consumer within 3
minutes of the time the data are first
available at the data provider during
nominal conditions (assuming no
communication outages or hardware
failures at data provider or con-
sumer).

TABLE 18: TRACEABILITY OF SYSTEM REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
95c The CDS shall deliver and parse 99.9
percent of data that are available at a
data provider into the data repository
of a data consumer for data con-
sumer outages caused by infrastruc-
ture failures of less than 4 days.

95d The CDS shall deliver and parse 99.9
percent of data that are available at a
data provider into the data repository
of a data consumer for data provider
outages caused by infrastructure fail-
ures of less than 4 days.

95e The CDS shall deliver and parse data
into disk loops and the Oracle data-
base within a time no greater than
110% of (outage duration / excess
bandwidth capacity).

95f The CDS shall automatically attempt
to initiate a connection between the
data provider and data consumer
within 5 minutes after recovery from
an outage caused by an infrastructure
failure.

95g The CDS shall automatically resume
service within 5 minutes after recov-
ery from an outage caused by an
infrastructure failure. Resumption of
service includes processing connec-
tion requests, exchanging CD-1.1
frames, and putting data into the
data repository.

TABLE 18: TRACEABILITY OF SYSTEM REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
173

s y s t e m C D - 1 . 1

a r y 2 0 0 3

174

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
96 Delivery of CD-1.1 Data Frames shall
coexist with CD-1.0 protocol data.

The design of the CDS CD-1.1 appli-
cations does not rely on any CDS
CD-1.0 applications. CD-1.1 data are
parsed into disk loop files, which are
the only common structures between
the two software implementations.
This sharing is in format only; DLMan
and DLParse do not write to the same
files.

97 CDS shall support automated for-
warding CD-1.1 protocol frames from
the IDC.

Configuration of a Data Center Man-
ager, Connection Originator,
Exchange Controller, and Frame
Exchange provide automated frame
forwarding capability.

98 The design of CDS shall allow poten-
tial use of UDP multicast for data dis-
tribution.

The design of CDS CD-1.1 includes
UDP multicast frame transport.

99 A priority policy for transmitting pro-
tocol frames shall be provided by the
CDS. Policy is established by the data
provider and includes at least FIFO
and LIFO ordering policies.

Exchange Controller accepts ordering
policies and priorities as configuration
parameters. These parameters are
used to construct a priority value to
provide with a frame transmission
request. Frame Exchange acts on the
priority to send frames in the desired
order/sequence.

100 A software component suite shall be
assembled that supports the con-
struction of a System capable of par-
ticipating in a CD-1.1 protocol
network, as either a data provider or
data center.

A public bundle of CDS CD-1.1 soft-
ware has been created and released.
The bundle contains elements useful
to a data provider implementer. The
element of this requirement that iden-
tifies support for a data center is not
satisfied.

101 CDS shall perform authentication
processing on frames containing
authentication signatures and shall
store the results.

All applications that create and receive
frames are capable of creating/verify-
ing authentication signatures. Results
from authentication activity are, at a
minimum, written to log files. Some
processes also store authentication
results in frame logs.

TABLE 18: TRACEABILITY OF SYSTEM REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
102 The CDS shall provide multicasting
capability to deliver CD-1.1 frames
using underlying IP router multicast
capability.

Connection Originator and Connec-
tion Manager will be modified to sup-
port multicast connections. A separate
multicast subsystem will perform mul-
ticast frame transport. The design for
multicast operation is presented in
many sections of this document.

M-1 Multiple data providers shall be capa-
ble of providing multicast data over
the transport network.

Different multicast data providers will
be configured to use different multi-
cast addresses.

M-2 Multicasting shall support all IMS sta-
tions in the Treaty (up to 321 sta-
tions) in multicasting data over a
common transport network.

Each station will use a different multi-
cast data provider and different multi-
cast address.

M-3 Transmission rates for multicast data
shall be configurable to mitigate net-
work congestion.

The transmission rate is provided in a
parameter file and used by the multi-
cast data provider to control its send-
ing rate.

M-4 A multicast data provider shall sup-
port 20 data consumers in a single
multicast group.

The mechanism that depends on
group size is packet retransmission.
The mechanism used is believed to
scale to 20 receiver per group.

M-5 A multicast data provider shall not be
limited in its sending by the absence
or presence of any specific multicast
data consumer.

The initiation and continued operation
of the multicast data provider is inde-
pendent of multicast consumers.

M-6 Multicasting shall support increases
and decreases in the size of the multi-
cast group without the need to restart
the sending activity of the data pro-
vider.

Changes in network distribution of
multicast packets are accomplished
automatically by routers. The only
impact on the multicast data provider
of changes in group membership are
the addition or deletion of a potential
source of PNacks. This change doesn’t
require any special action on the part
of the multicast data provider.

TABLE 18: TRACEABILITY OF SYSTEM REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
175

s y s t e m C D - 1 . 1

a r y 2 0 0 3

176

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
M-7 The size of multicast data packets
shall be configurable to support the
smallest MTU (Maximum Transmis-
sion Unit) used by the transport net-
work.

The size of the multicast data packets
is given in a parameter file and used
by the multicast data provider.

M-8 A method for identifying, requesting,
and resending missing multicast data
packets of an active multicast session
shall be provided, limited by config-
urable data buffer size.

This is provided by the PNack mecha-
nism.

M-9 A multicast data provider shall trans-
mit frames in the order in which they
were written to its CD-1.1 frame set,
with the exception of retransmissions.

The multicast data provider reads
frames in FIFO order, inserts their data
in the same order in its buffer, and
sends the data in the same order.

M-10 A multicast data provider shall begin
delivery at the current time or a con-
figurable lookback time less than 10
minutes prior to the current time to
prevent multicast stream gaps over
short data provider outages.

The lookback interval is given in a
parameter file and used by the multi-
cast data provider to decide where to
start reading the frame store.

M-11 A multicast data consumer shall be
capable of entering or leaving a mul-
ticast group without negatively
impacting other group members.

There is no direct interaction among
the multicast consumers that belong
to the same group.

M-12 Multicasting shall require less band-
width on the data-provider communi-
cation link to service four multicast
data consumers than required by
CD-1.1 point-to-point communica-
tions from a data provider directly to
two point-to-point data consumers.

The design is believed to provide this
level of efficiency. Verification that the
level has been achieved will be by
actual measurement.

TABLE 18: TRACEABILITY OF SYSTEM REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
M-13 A multicast group shall correspond to
one and only one frame set.

A multicast provider is configured with
a single frame set. It only reads from
that frame set.

C-1 The CDS shall use sequence numbers
to detect frames not received by a
data consumer via multicasting.

This functionality is provide by Missing
Frame Detector.

C-2 The CDS shall attempt to deliver to a
data consumer frames not received
via multicasting.

This functionality is provided by the
unicast subsystem when it operates in
catchup mode.

TABLE 18: TRACEABILITY OF SYSTEM REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
177

s y s t e m C D - 1 . 1

a r y 2 0 0 3

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u

S o f t w a r e
I D C D O C U M E N T A T I O N
Refe rences

The following sources supplement, or are referenced in, the document:

[Aga01] Agarwal, D., “Discussion of Reliable Multicast Progress for the
Continuous Data Protocol,” GCI Workshop, Vienna, Austria,
October 1-3, 2001.

[DOD94a] Department of Defense Data Item Description, Software Design
Description, DI-IPSC-81435, 1994.

[DOD94b] Department of Defense Data Item Description, Software
Requirements Specification, DI-IPSC-81433, 1994.

[IDC3.4.1Rev3] Science Applications International Corporation, Veridian
Systems, Formats and Protocols for Messages, Revision 3,
SAIC-01/3053, TN-2865, 2001.

[IDC3.4.2Rev0.1] Science Applications International Corporation, Formats and
Protocols for Continuous Data CD-1.0, Revision 0.1,
SAIC-01/3054, 2002.

[IDC3.4.3Rev0.2] Science Applications International Corporation, Formats and
Protocols for Continuous Data CD-1.1, Revision 0.2,
SAIC-01/3027Rev0.2, 2001.

[IDC5.1.1Rev3] Science Applications International Corporation, Veridian
Systems, Database Schema, (Part 1, Part 2, and Part 3),
Revision 3, SAIC-01/3052, TN-2866, 2001.

[IDC6.5.18] Science Applications International Corporation, Continuous
Data Subsystem CD-1.1 Software User Manual, SAIC-01/3006,
2001.
s y s t e m C D - 1 . 1

a r y 2 0 0 3 179

180

▼ References

S o f t w a r e
I D C D O C U M E N T A T I O N
[SAIC-01/3068] Science Applications International Corporation, Options for
Reliable Multicast Transport of CD-1.1 Frames, SAIC-01/3068,
2001.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

S o f t w a r e
I D C D O C U M E N T A T I O N

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n
Glossa ry

A

AckNack

Acknowledgement/Negative Acknowl-
edgement.

API

Application Program Interface.

architecture

Organizational structure of a system or
component.

architectural design

Collection of hardware and software
components and their interfaces to
establish the framework for the devel-
opment of a computer system.

array

Collection of sensors distributed over a
finite area (usually in a cross or concen-
tric pattern) and referred to as a single
station.

ASCII

American Standard Code for Informa-
tion Interchange. Standard, unformatted
256-character set of letters and num-
bers.

authentication signature

Series of bytes that are unique to a set
of data and that are used to verify the
authenticity of the data.

authenticate

Verify the authenticity of a string of bits
with an authentication signature.

B

bps

Bits per second. The speed at which data
is transferred. Variants include Kbps and
Mbps.

C

channel

Component of motion or distinct stream
of data.

child process

UNIX process created by a parent pro-
cess.

CMR

Center for Monitoring Research.
G1

s y s t e m C D - 1 . 1

u a r y 2 0 0 3

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G2
command

Expression that can be input to a com-
puter system to initiate an action or
affect the execution of a computer pro-
gram.

component

(1) One dimension of a three-dimen-
sional signal; (2) The vertically or hori-
zontally oriented (north or east) sensor
of a station used to measure the dimen-
sion; (3) One of the parts of a system;
also referred to as a module or unit.

Comprehensive Nuclear-Test-Ban Treaty
Organization

Treaty User group that consists of the
Conference of States Parties (CSP), the
Executive Council, and the Technical
Secretariat.

Computer Software Component

Functionally or logically distinct part of a
computer software configuration item,
typically an aggregate of two or more
software units.

Computer Software Configuration Item

Aggregation of software that is desig-
nated for configuration management
and treated as a single entity in the con-
figuration management process.

Conference of States Parties

Principal body of the CTBTO consisting
of one representative from each State
Party accompanied by alternate repre-
sentatives and advisers. The CSP is
responsible for implementing, execut-
ing, and verifying compliance with the
Treaty.

configuration

Arrangement of computer system or
component as defined by the number,
nature, and interconnection of its parts.

configuration item

Aggregation of hardware, software, or
both treated as a single entity in the
configuration management process.

connection

Open communication path between
protocol peers.

control flow

Sequence in which operations are per-
formed during the execution of a com-
puter program.

COTS

Commercial-Off-the-Shelf. Terminology
that designates products such as hard-
ware or software that can be acquired
from existing inventory and used with-
out modification.

cron

UNIX system utility to execute com-
mands at regularly scheduled dates and
times.

CSC

Computer Software Component.

CSCI

Computer Software Configuration Item.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u
CSP

Conference of States Parties. The princi-
pal body of the CTBTO consisting of one
representative from each State Party
accompanied by alternate representa-
tives and advisers. The CSP is responsible
for implementing, executing, and verify-
ing compliance with the Treaty.

CSS

Center for Seismic Studies (now the
CMR).

CSS 3.0

Center for Seismic Studies (CSS) version
3 database schema, including a format
for storing time-series data in disk files
and database descriptors of that data.

CTBT

Comprehensive Nuclear-Test-Ban Treaty
(the Treaty).

CTBTO

Comprehensive Nuclear-Test-Ban Treaty
Organization. Treaty user group that
consists of the Conference of States Par-
ties (CSP), the Executive Council, and
the Technical Secretariat.

D

daemon

Executable program that runs continu-
ously without operator intervention.
Usually, the system starts daemons dur-
ing initialization. (Example: cron.)

data center

Location receiving data from multiple
data providers. Often this location will
also process and forward time-series
data received.

Data Center Manager

Process to monitor and start selected
components of the CDS CD-1.1 Sub-
system.

data consumer

Receiver of CD-1.1 Data Frames. This is
always a data center.

data flow

Sequence in which data are transferred,
used, and transformed during the execu-
tion of a computer program.

data provider

Sender of CD-1.1 Data Frames. This may
be a station or a data center that for-
wards data.

DBA

Database Administrator.

DBMS

Database Management System.

detailed design

Refined and expanded version of the
preliminary design of a system or com-
ponent. This design is complete enough
to be implemented.
G3

s y s t e m C D - 1 . 1

a r y 2 0 0 3

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G4
disk loop

Storage device that continuously stores
new waveform data while simulta-
neously deleting the oldest data on the
device.

DSA

Digital Signature Algorithm.

E

entity-relationship (E-R) diagram

Diagram that depicts a set of entities and
the logical relationships among them.

execute

Carry out an instruction, process, or
computer program.

F

failure

Inability of a system or component to
perform its required functions within
specified performance requirements.

FIFO

First In First Out.

fork

UNIX system routine used by a parent
process to create a child process that is
an exact copy of itself.

frame

Logical collection of digital information
that is transmitted as a unit from applica-
tion to application.

frame handle

Data set describing a frame in the Frame
Store.

frame set

Element of a Frame Store. Frame sets are
defined for each source and destination
pair. Each frame set has an associated
frame log, which is also an element of
the Frame Store.

Frame Store

Disk directories and files used to store
raw CD-1.1 protocol frames. A Frame
Store is made up of frame sets.

FTP

File Transfer Protocol. Protocol for trans-
ferring files between computers.

G

GB

Gigabyte. A measure of computer mem-
ory or disk space that is equal to 1,024
megabytes.

GDI

Generic Database Interface.

H

HBO

Host byte order.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u
host

Machine on a network that provides a
service or information to other comput-
ers. Every networked computer has a
host name by which it is known on the
network.

Hz

Hertz.

I

IDC

International Data Centre.

IGMP

Internet Group Management Protocol.

IMS

International Monitoring System.

inetd

Internet services daemon for UNIX. The
daemon listens for service requests on a
TCP or UDP port and executes the
server program associated with the ser-
vice.

instance

Running computer program. An individ-
ual program may have multiple instances
on one or more host computers.

Internet

World-wide network of computers
linked by means of the IP protocol.

I/O

Input/Output.

IP

Internet Protocol.

IP address

Internet Protocol address, for example:
140.162.1.27.

IPC

Interprocess communication. The mes-
saging system by which applications
communicate with each other through
libipc common library functions.

J

job template

A series of parameter definitions used to
describe a job/process to be managed by
the Data Center Manager.

K

key

Data string used by authentication soft-
ware. Typically keys are defined in pairs,
public and private. The private key is
used to sign data (produce a validation
data value), and the public key is used
verify data (determine that a validation
data value was produced by the private
counterpart of the public key).

L

LAN

Local Area Network.
G5

s y s t e m C D - 1 . 1

a r y 2 0 0 3

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G6
LIFO

Last In First Out.

M

M

Mega (prefix), million.

MB

Megabyte. 1,024 kilobytes.

MHz

Megahertz. A million cycles (occur-
rences, alterations, pulses) per second.

monitoring system

See IMS.

MTU

Maximum Transmission Unit. The largest
packet size that a network can transmit.

multicast

To transmit a single message to a select
group of recipients over a network.

mutex

Mutual exclusion lock used to prevent
multiple threads from simultaneously
executing critical sections of code that
access shared data.

N

NBO

Network byte order.

NDC

National Data Center.

network

Two or more computer systems linked
together.

NFS

Network File System (Sun Microsys-
tems). Protocol that enables clients to
mount remote directories onto their own
local filesystems.

O

ORACLE

Vendor of PIDC and IDC database man-
agement system.

P

par

See parameter.

parameter

User-specified token that controls some
aspect of an application (for example,
database name, threshold value). Most
parameters are specified using [token =
value] strings, for example,
dbname=mydata/base@oracle .

parameter (par) file

ASCII file containing values for parame-
ters of a program. Par files are used to
replace command line arguments. The
files are formatted as a list of [token =
value] strings.
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u
parent process

UNIX process that creates a child pro-
cess.

parse

Decompose information contained in a
set of data.

pathname

Filesystem specification for a file’s loca-
tion.

PID

Process Identifier.

PIDC

Prototype International Data Centre.

pipe

Interprocess communication facility pro-
vided by the UNIX operating system.
Pipes typically are defined in pairs to
support data transmission between two
processes where each pipe supports a
one-way flow of data.

PNack

Packet Negative Acknowledgement.

port

Connection to a computer.

protocol

Common set of rules and signals that
computers on a network use to commu-
nicate.

protocol peer

Computer system participating in an
exchange of data using a specific proto-
col (for example CD-1.1).

R

RAM

Random Access Memory.

recovery

Restoration of a system, program, data-
base, or other system resource to a state
in which it can perform required func-
tions.

run

(1) Single, usually continuous, execution
of a computer program. (2) To execute a
computer program.

S

SAIC

Science Applications International Cor-
poration.

schema

Database structure description.

script

Small executable program, written with
UNIX and other related commands, that
does not need to be compiled.

signature

Bits added to data that are used to verify
the authenticity of the data.
G7

s y s t e m C D - 1 . 1

a r y 2 0 0 3

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G8
socket

Type of file used for network communi-
cation between processes.

software unit

Discrete set of software statements that
implements a function; usually a sub-
component of a CSC.

Solaris

Name of the operating system used on
Sun Microsystems hardware.

spawn

To launch a program from another pro-
gram. The child program is spawned
from the parent program.

SSL

Secure Sockets Layer. A protocol devel-
oped by Netscape for transmitting pri-
vate documents via the Internet. SSL
works by using a public key to encrypt
data that’s transferred over the SSL con-
nection.

States Parties

Treaty user group who will operate their
own or cooperative facilities, which may
be NDCs.

T

TCP/IP

Transmission Control Protocol/Internet
Protocol.

thread

Short for a processing thread, which is
an execution path. A process may be
single or multi-threaded. In a multi-
threaded process all threads share a sin-
gle address space but have independent
execution paths.

Treaty

Comprehensive Nuclear-Test-Ban Treaty
(CTBT).

U

UDP

User Datagram Protocol.

unicast

Communication that takes place over a
network between a single sender and a
single receiver.

UNIX

Trade name of the operating system
used by the Sun workstations.

W

WAN

Wide Area Network.

waveform

Time-domain signal data from a sensor
(the voltage output) where the voltage
has been converted to a digital count
(which is monotonic with the amplitude
of the stimulus to which the sensor
responds).
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u
Web

World Wide Web. A graphics-intensive
environment running on top of the
Internet.

wfdisc

Waveform description record or table.
G9

s y s t e m C D - 1 . 1

a r y 2 0 0 3

S o f t w a r e
I D C D O C U M E N T A T I O N

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u
I ndex

A

affiliation 28, 119, 137, 138
Alpha protocol 12
alphasite 28, 59, 137, 138
Authentication

functional description 29, 41
Authentication Signing

requirements 149
requirements traceability 166

C

CDS CD-1.1
data flow model 46
functional description 29
functional requirements 142
interface design 42
system requirements 153

channame 138
configuration

hardware 8
connection initiation

mulitcast 26
unicast catchup 26

Connection Manager
context 54
control 60
database processing 58
data flow model 46, 50

detailed design 54
error states 60
frame processing 58
functional description 29, 34
I/O 54
interfaces 60
output 59
processing 55
requirements 142
requirements traceability 157

Connection Manager Server
components 64
context 62
control 66
data flow model 46, 50
detailed design 61
error states 66
I/O 62
interfaces 66

Connection Originator
context 75
control 77
data flow model 49
detailed design 75
error states 78
functional description 29, 36
I/O 77
interfaces 77
internal data and control flow 76
requirements 144
requirements traceability 159

Connection Response Frame
contents 26

COTS
openSSL 9
ORACLE DBMS 9
requirements 9

cron
I1

s y s t e m C D - 1 . 1

a r y 2 0 0 3

▼ Index

S o f t w a r e
I D C D O C U M E N T A T I O N

I2
running Frame Store Stager 41

D

database
Database Management System (DBMS)

DBMS 8
description 136
interface 136
schema overview 28
table relationships 138
usage by CDS 139
use of 9
use of and access to 18

Data Center Manager
components 68
context 67
control 72
data flow model 48, 51
detailed design 67
error states 74
events 71
functional description 29, 35
I/O 69
interfaces 72
internal control flow 74
job template attributes 70
requirements 143
requirements traceability 158

data flow symbols vi
data packet

format 135
Data Parser

context 114
control 120
data flow 115
data flow model 48
detailed design 113
DLParse Exec 115
error states 121
functional description 29, 40
I/O 119

interfaces 121
output 120
Process Frame 119
Process Loop 117
requirements 147
requirements traceability 163, 165

design model
multicast operation 21
tradtional unicast operation 20

development
history 7

dlfile 119, 137, 138
dlman 28, 58, 137, 138

E

entity-relationships 138
entity-relationship symbols vii
Exchange Controller

context 79
control 84
Controller Executive 81
data flow 80
data flow model 47, 50
detailed design 79
error states 87
Exchange Interface 82
Frame Handler 83
functional description 29, 37
I/O 84
interfaces 85
requirements 145
requirements traceability 160

F

file system
use of 19

Frame Exchange
components 89
context 88
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Index

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u
control 95
data flow model 48, 50
detailed design 88
error states 97
Frame I/O 92
functional description 29, 38
Heartbeat 91
I/O 94
interfaces 96
Main Loop 90
Message Sender 91
requirements 146
requirements traceability 161
Sender 92
Time Counter 90

Frame Store
requirements 151
requirements traceability 168

Frame Store Stager
functional description 29, 41

functional requirements 142

H

hardware
configuration 8
requirements 7

I

IGMP 9
inetd

running Connection Manager 46
instrument 119, 137, 138
interfaces

database 136
external users 43
operator 43
other IDC systems 42

IPC
use of 18

L

libas 17
libcancomp 17
libcdo

control 134
detailed design 133
error states 135
I/O 134
requirements 152
requirements traceability 170

libframelog 17
libfs

control 131
detailed design 128
error states 133
I/O 129
interfaces 131

libgdi 17
liblog 17
libpar 17
libraries

used by CDS CD-1.1 17
libstdtime 17
libtable 17
libwfm 17
libwio 18
log files 43

M

Missing Frame Detector 109
context 109
control 112
data flow 110
data flow model 50
error states 112
I/O 111
interfaces 112
processing 109

multicast
data packet 135
I3

s y s t e m C D - 1 . 1

a r y 2 0 0 3

▼ Index

S o f t w a r e
I D C D O C U M E N T A T I O N

I4
PNack packet 136
protocol 135
reliable multicasting 21
transmission 13

multicast group
IGMP 9
joining 26
membership 9

multicast operation
conceptual design 15
connection initiation

multicast 26
unicast catchup 26

data flow model 49
design model 21
functional description 32
startup time 27

Multicast Receiver
data flow model 49
Error States 108
functional description 29, 39
Processing 104

Multicast Sender
context 98
Error States 103
functional description 29, 38
Processing 99

multicast subsystem
data flow 51

N

network requirements 8

O

openSSL 18
download 9
use of 9

operating environment 7
operator interface 43

P

packet format
data packet 135
PNack packet 136

PNack packet
format 136
transmission 21

protocol
CD-1.0 (Alpha) 12
CD-1.1 12
multicast 135

Protocol Checker
context 126
control 127
detailed design 126
error states 128
I/O 127
interfaces 127

R

reliability hosts 24
reliable multicasting 21
requirements

Authentication Signing 149
Connection Manager 142
Connection Originator 144
COTS software 9
Data Center Manager 143
Data Parser 147
Exchange Controller 145
Frame Exchange 146
Frame Store 151
functional 142
hardware 7
libcdo 152
network 8
Signature Authentication 150
system 153
 J a n u a r y 2 0 0 3 I D C - 7 . 4 . 1 R e v 1

C o n t i n u o u s D a t a S u b s y s t e m C D - 1 . 1

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Index

C o n t i n u o u s D a t a S u b

I D C - 7 . 4 . 1 R e v 1 J a n u
S

sensor 28, 119, 137, 138
Signature Authentication

requirements 150
requirements traceability 167

site 28, 119, 137, 138
sitechan 28, 119, 137, 138
software requirements

COTS 9
system requirements

requirements traceability 171

T

TCP/IP 8, 43
typographical conventions vii

U

UDP 8, 43
unicast

tradtional unicast 14
transmission 13
UDP 21
unicast catchup 22

unicast catchup subsystem
data flow 51
reliability hosts 24

unicast operation, traditional
conceptual design 14
data flow model 46
design model 20
functional description 30

W

waveform
CSS 3.0 format 49, 136
DBMS description records 17

disk loop 28
files 17

wfconv 29, 119, 137, 138
wfdisc 29, 40, 49, 119, 137
wfproto 29, 119, 137
I5

s y s t e m C D - 1 . 1

a r y 2 0 0 3

	Cover Page
	Notice Page
	Change Page
	Contents
	Figures
	Tables
	About this Document
	Purpose
	Scope
	Audience
	Related Information
	Using this Document
	Conventions

	Chapter 1: Overview
	Introduction
	Functionality
	Identification
	Background and History
	Operating Environment
	Hardware
	Network Environment
	Commercial-Off-The-Shelf Software

	Chapter 2: Architectural Design
	Conceptual Design
	Traditional Unicast Operation
	Multicast Operation
	Data Parsing

	Design Decisions
	Programming Language
	Global Libraries
	Database
	Interprocess Communication (IPC)
	File System
	Traditional Unicast Design Model
	Multicast Design Model
	Custom Multicast Solution
	Data Provider Provides Reliable Multicasting
	Unicast Catchup
	Separate Multicast and Unicast Catchup Subsystems
	Reliability Hosts for Unicast Catchup Subsystem
	Multicast Connection Initiation
	Unicast Catchup Connection Initiation
	Multicast Startup Time
	Database Schema Overview

	Functional Description
	Traditional Unicast Functional Description
	Multicast Functional Description

	Software Components
	Connection Manager
	Data Center Manager
	Connection Originator
	Exchange Controller
	Frame Exchange
	Multicast Sender
	Multicast Receiver
	Data Parser
	Frame Store Stager
	Authentication

	Interface Design
	Interface with Other IDC Systems
	Interface with External Users
	Interface with Operators

	Chapter 3: Detailed Design
	Data Flow Model
	Traditional Unicast Operation
	Multicast Operation

	Processing Units
	Connection Manager
	Connection Manager Server
	Data Center Manager
	Connection Originator
	Exchange Controller
	Frame Exchange
	Multicast Sender
	Multicast Receiver
	Missing Frame Detector
	Data Parser
	Frame Store Stager
	Protocol Checker
	libfs
	libcdo

	Multicast Protocol
	Data Packet Format
	PNack Packet Format

	Database Description
	Database Interface
	Database Design

	Chapter 4: Requirements
	Introduction
	Functional Requirements
	Connection Manager Requirements
	Data Center Manager Requirements
	Connection Originator Requirements
	Exchange Controller Requirements
	Frame Exchange Requirements
	Data Parser Requirements
	Frame Store Stager Requirements
	Authentication Signing Requirements
	Signature Authentication Requirements
	Frame Store Requirements
	libcdo Requirements

	System Requirements
	Multicast Subsystem Requirements
	Unicast Catchup Subsystem Requirements

	Requirements Traceability

	References
	Glossary
	Index

